
Step-by-Step Guide: How to Setup Wastebin

Getting Started

This article will guide you through

the process of building your own Wastebin image for the ARM64 architecture, specifically designed
to run on a Raspberry Pi 5. Wastebin is a minimal pastebin application originally designed for
AMD64 architecture. In this guide, you will learn how to build and run it on ARM64 using Docker
Swarm with an SQLite3 database.

Start by cloning the official Wastebin GitHub repository:

Navigate to the downloaded Wastebin repository:

Step-by-Step Guide: How to
Setup Wastebin

Building the Image for ARM64/v8
Architecture
Step 1: Download the Wastebin GitHub Repository

git clone https://github.com/matze/wastebin.git

Step 2: Navigate to the Wastebin Directory

cd /path/to/wastebinrepo/wastebin

https://github.com/matze/wastebin
https://hub.docker.com/r/aeoneros/wastebin/tags

To build an ARM64 image on an x86_64 host, run the following command:

Check if the image was built successfully:

You should see output like this:

Login to your Docker Hub account:

After logging in, visit https://login.docker.com/activate and enter your confirmation code.

You can now push your newly built image to Docker Hub.

Step 5.1: Tag the image using your Docker Hub username:

Step 5.2: Push the image to Docker Hub:

Step 3: Build the ARM64 Image

sudo docker build --platform linux/arm64 -t wastebin:v2.5.0-arm64 -f Dockerfile.arm .

Building the image may take some time. For example, it took around 322 seconds for me, so
be patient.

Step 3.1: Verify the Image

docker images

wastebin v2.5.0-arm64 796d3c8a13da 42 seconds ago 12.3MB

Step 4: Login to Docker Hub

docker login

Step 5: Push the Image to Docker Hub

docker tag wastebin:v2.5.0-arm64 aeoneros/wastebin:v2.5.0-arm64

https://login.docker.com/activate

You’ll need a directory for storing Wastebin data. Create the following directories:

Now create and customize your docker-compose.yaml file:

Here is an example configuration:

docker push aeoneros/wastebin:v2.5.0-arm64

You can also access my prebuilt image on Docker Hub: Wastebin ARM64 Image.

Running Wastebin with Docker-Compose
and Traefik
Step 1: Create a Directory for Persistent Data

mkdir /mnt/glustermount/data/wastebin_data
sudo useradd -u 10001 wastebinuser

Step 2: Create the Docker Compose File

nano docker-compose.yaml

version: "3.8"

services:
 wastebin:
 image: aeoneros/wastebin:v2.5.0-arm64
 environment:
 - WASTEBIN_DATABASE_PATH=/data/state.db # Don't change this, it maps inside the container
 - WASTEBIN_PASSWORD_SALT=${WASTEBIN_PASSWORD_SALT_HASH}
 - RUST_LOG=info

https://hub.docker.com/r/aeoneros/wastebin/tags

Change the ownership and permissions of the storage directory to ensure proper access.

Step 3.1: Change ownership:

Step 3.2: Set the correct permissions:

Verify the ownership and permissions:

You should see something like this:

 volumes:
 - '/mnt/glustermount/data/wastebin_data:/data'
 networks:
 - management_net
 deploy:
 mode: replicated
 replicas: 1
 labels:
 - 'traefik.enable=true'
 - 'traefik.http.routers.wastebin.rule=Host(`wastebin.aeoneros.com`)'
 - 'traefik.http.routers.wastebin.entrypoints=websecure'
 - 'traefik.http.routers.wastebin.tls.certresolver=leresolver'
 - 'traefik.http.services.wastebin.loadbalancer.server.port=8088'
 - 'traefik.docker.network=management_net'

networks:
 management_net:
 external: true

Ensure the /wastebin_data folder is writable by user 10001 .

Step 3: Adjust Permissions

sudo chown 10001:10001 /mnt/glustermount/data/wastebin_data

sudo chmod 700 /mnt/glustermount/data/wastebin_data

ls -ld /mnt/glustermount/data/wastebin_data

Deploy the Wastebin service using Docker Swarm:

The following environment variables can be used to configure Wastebin:

WASTEBIN_ADDRESS_PORT: Sets the address and port (default: 0.0.0.0:8088).
WASTEBIN_BASE_URL: Determines the base URL for QR code display.
WASTEBIN_CACHE_SIZE: Number of cached syntax-highlighted items (default: 128).
WASTEBIN_DATABASE_PATH: Path to the SQLite3 database (default: in-memory).
WASTEBIN_HTTP_TIMEOUT: Maximum request processing time (default: 5 seconds).
WASTEBIN_MAX_BODY_SIZE: Maximum POST request size (default: 1 MB).
WASTEBIN_MAX_PASTE_EXPIRATION: Maximum paste lifetime (default: unlimited).
WASTEBIN_PASSWORD_SALT: Salt for hashing user passwords.
WASTEBIN_SIGNING_KEY: Key to sign cookies (random if not set).
WASTEBIN_TITLE: HTML page title (default: wastebin).
RUST_LOG: Logging level (e.g., info , debug).

The WASTEBIN_PASSWORD_SALT environment variable provides additional security when hashing
passwords. Here’s how it works:

drwx------ 10001 10001 ... /mnt/glustermount/data/wastebin_data

Step 4: Deploy the Stack

docker stack deploy -c docker-compose.yaml wastebin

Configuration Options

Extra Information:
WASTEBIN_PASSWORD_SALT

What is a Password Hash?
A password hash is a secure, irreversible transformation of a user’s password, ensuring the
password itself is not stored.

What is a Salt?
A salt is a random string added to the password before hashing, ensuring that even if two users
have the same password, their hashes will differ.

Why Use a Salt?
Using a salt protects against certain attacks, like rainbow table attacks, by making it harder for
attackers to crack passwords.

Do You Need to Set It?
For production environments, it’s recommended to set a unique, secure salt. You can generate a
salt using:

In this guide, you’ve learned how to build and deploy Wastebin for ARM64 architecture on a
Raspberry Pi 5 using Docker Swarm. Wastebin’s minimal footprint, combined with features like
encrypted pastes and QR code sharing, make it a versatile tool for managing and sharing data.
With proper configuration, you can run it securely in production and adapt it to future versions as
needed.

openssl rand -base64 32

Conclusion

