
In this article, we will walk through creating a self-signed certificate for multiple local services (e.g.,
Portainer and Pi-hole) using OpenSSL. We'll also configure Traefik to use this certificate in Docker
Swarm. Additionally, we will explain how SSL certificates work, the role of key components like the
private key, public key, and Certification Authority (CA). We'll use the provided image for
understanding these concepts.

You already have Traefik, Portainer, Pi-hole, and Docker Swarm set up.
You have a local DNS setup using Pi-hole to resolve local domain names such as
portainer.local and pihole.local .

Whats FQDN?

FQDN (Fully Qualified Domain Name) is the complete domain name of a specific host within
the internet or a local network. It includes both the hostname and the domain name, ensuring
the address is globally unique. An FQDN typically follows this format: hostname.domain.tld (e.g.,
www.example.com). For local networks, it can be something like portainer.local or pihole.local . The
FQDN provides a precise location for a resource in the DNS hierarchy, making it essential for
properly identifying services across networks.

Setting up Self-Signed
Multiple FQDN Certificates
for Local Services in Traefik

Overview

Prerequisites

Step 1: Create a Multiple FQDN Certificate with OpenSSL

https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm
https://wiki.aeoneros.com/books/portainer
https://wiki.aeoneros.com/books/pihole-setup-guide
https://wiki.aeoneros.com/books/docker-guide/page/getting-started-with-swarm-mode-create-a-swarm
https://doc.traefik.io/traefik/https/tls/

1. Generate a private key for the certificate:

openssl genrsa -out local.key 4096

2. Create a Certificate Signing Request (CSR) for multiple FQDNs. First, create a
configuration file san.cnf :

touch /mnt/glustermount/data/certs/san.cnf

[req] # Request options
default_bits = 4096 # Size of the encryption key
prompt = no # No prompts, all values are provided in the config file
default_md = sha256 # Use SHA256 for the certificate
distinguished_name = dn # Use the 'dn' section for distinguished names
req_extensions = req_ext # Use 'req_ext' for additional extensions like SAN (Subject Alternative
Name)

[dn] # Distinguished Name section
CN = portainer.local # Common Name (CN) for the certificate (primary domain)

[req_ext] # Extensions for the certificate request
subjectAltName = @alt_names # Use alternative names (SAN)

[alt_names] # Alternative domain names
DNS.1 = portainer.local # First DNS name (alternative domain)
DNS.2 = pihole.local # Second DNS name (alternative domain)

3. Generate the CSR using the configuration file:

openssl req -new -key local.key -out local.csr -config san.cnf

4. Generate a self-signed certificate for 1 year (365 days):

openssl x509 -req -in local.csr -signkey local.key -out local.crt -days 365 -extfile san.cnf -extensions
req_ext

5. Move the certificate and key to a shared directory accessible by Docker Swarm:
(If you need help to understand how the Nodes of the Docker Swarm Cluster are sharing
the synced Files - Check this Article)

https://wiki.aeoneros.com/books/glusterfs-keepalived-setup/chapter/glusterfs

mkdir -p /mnt/glustermount/data/certs
mv local.crt local.key /mnt/glustermount/data/certs/

The san.cnf file helps OpenSSL create a certificate with multiple domain names (FQDNs). Here’s a
breakdown of the file:

[req]: Specifies the general options for generating the certificate request, such as key
size, hashing algorithm (SHA256), and the distinguished name section.
[dn]: Defines the common name (CN), which in this case is the primary domain (
portainer.local).
[req_ext]: Specifies the Subject Alternative Names (SANs), which allow the certificate to
be valid for additional domain names (e.g., pihole.local).
[alt_names]: Lists the additional domain names (DNS.1 , DNS.2 , etc.) that will be included
in the certificate.

Edit your traefik.toml file to include the certificate you generated:

Step 2: Understanding the san.cnf File

This setup creates a certificate that can be used for both portainer.local and pihole.local ,
ensuring secure access over HTTPS. You can add any other Local DNS Entry to the List. Just
make sure to add the Entry to your Pihole under the "Local DNS - DNS Records" Section.

Step 3: Add the Certificate to Traefik's Static Configuration
(TOML)

[entryPoints]
 [entryPoints.websecure]
 address = ":443"

[tls]
 [[tls.certificates]]
 certFile = "/mnt/glustermount/data/certs/local.crt"
 keyFile = "/mnt/glustermount/data/certs/local.key"
 stores = ["default"]

This configuration tells Traefik to use the multiple FQDN certificate (local.crt) for requests matching
portainer.local and pihole.local .

Now, configure the dynamic behavior of Traefik using the dynamic.toml file:

[tls.stores]
 [tls.stores.default]
 [tls.stores.default.defaultCertificate]
 certFile = "/mnt/glustermount/data/certs/local.crt"
 keyFile = "/mnt/glustermount/data/certs/local.key"

Step 4: Assign the Self-Signed Certificate to Specific
Services

[http]
 [http.routers]
 [http.routers.portainer-secure]
 rule = "Host(`portainer.local`)"
 service = "portainer"
 entryPoints = ["websecure"]
 tls = { certResolver = "self-signed" }

 [http.routers.pihole-secure]
 rule = "Host(`pihole.local`)"
 service = "pihole"
 entryPoints = ["websecure"]
 tls = { certResolver = "self-signed" }

 [http.services]
 [http.services.portainer.loadBalancer]
 [[http.services.portainer.loadBalancer.servers]]
 url = "http://portainer:9443"

 [http.services.pihole.loadBalancer]
 [[http.services.pihole.loadBalancer.servers]]
 url = "http://pihole:888"

Here’s the Pi-hole docker-compose.yml adjusted to match the certificate and Traefik settings:

Step 5: Adjust the Pi-hole Docker Compose Configuration

version: '3'

services:
 pihole:
 networks:
 - management_net # For management via Traefik
 image: pihole/pihole:latest
 ports:
 - "53:53/tcp"
 - "53:53/udp"
 - "888:80"
 environment:
 TZ: 'Europe/Zurich'
 WEBPASSWORD: '${PIHOLE_PASSWORD}'
 volumes:
 - '/mnt/glustermount/data/pihole_data/etc:/etc/pihole'
 - '/mnt/glustermount/data/pihole_data/dns:/etc/dnsmasq.d'
 restart: unless-stopped
 deploy:
 mode: replicated
 replicas: 1
 placement:
 constraints: [node.platform.os == linux]
 labels:
 - 'traefik.enable=true'
 - "traefik.http.routers.pihole-secure.rule=Host(`pihole.local`)"
 - "traefik.http.routers.pihole-secure.entrypoints=websecure"
 - "traefik.http.routers.pihole-secure.tls=true"
 - "traefik.http.services.pihole.loadbalancer.server.port=80"

networks:
 management_net:
 external: true

Run the following command to apply the updated stack configuration:
(You can also use Portainer running the Stack)

1. Add the self-signed certificate to your trusted sources on your machine. This can
be done by importing the .crt file into your browser or system's trusted certificates store.

2. Verify the secure connections:
Access https://portainer.local:9443
Access https://pihole.local:888

Both should now use your self-signed certificate with proper encryption.

Step 6: Deploy the Updated Stack

docker stack deploy -c docker-compose.yml your_stack_name

Step 7: Test the Setup

Revision #5
Created 7 October 2024 15:47:20 by aeoneros
Updated 5 January 2025 11:17:02 by aeoneros

