
This guide provides information on how to set up a simple TLS-Challenge for Traefik to use Let's
Encrypt and certify your domains/websites. We will configure Traefik to act as a reverse proxy for a
simple "Whoami" application and secure the app using Let's Encrypt.

Understanding TLS: Check this guide.
Understanding Let's Encrypt: Check this guide.

The TLS-ALPN-01 challenge is a method used by Let's Encrypt to verify domain ownership.
Instead of using the HTTP challenge, it leverages the TLS handshake to validate the domain. This is
especially useful for environments where port 80 is blocked or cannot be used.

Docker-compose with Let's
Encrypt: TLS Challenge

Introduction

Overview of TLS-Challenge

Difference Between HTTP-Challenge & TLS-Challenge

https://doc.traefik.io/traefik/user-guides/docker-compose/acme-tls/
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/tls-how-does-it-work-more
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/lets-encrypt-how-does-it-work-more
https://wiki.aeoneros.com/uploads/images/gallery/2025-02/Iy2hDpUwtWE42t4S-screenshot-from-2023-05-21-15-53-42-1.png


The HTTP Challenge uses HTTP requests on port 80 to verify domain ownership by serving a
specific file at http://your-domain/.well-known/acme-challenge/ . The TLS Challenge verifies ownership
during the TLS handshake on port 443 by presenting a special certificate, making it more suitable
for HTTPS-only environments or when port 80 is blocked.

For the TLS challenge you will need:

A publicly accessible host allowing connections on port  443  with docker & docker-
compose installed.
A DNS record with the domain you want to expose pointing to this host.

Before proceeding, make sure your domain name is correctly configured. Create a DNS A Record
that points your domain to the public IP address of your server.

If you don't know what a DNS A Record is, check out this post from Cloudflare.

In this guide, we will use GlusterFS (only needed when using Docker Swarm).
Feel free to adjust your paths as needed.

There are multiple ways to set up your Traefik configuration—either directly in the docker-

compose.yaml  file or by outsourcing it to external configuration files. Find more information here.

In this step, we provide the option traefik.http.routers.traefik.middlewares=authtraefik , which is optional
but highly recommended to secure your Traefik dashboard with login authentication. Check out the

Prerequisite

Step 0: Configuring DNS Records

Step 1: Create ACME File

mkdir ./letsencrypt
touch ./letsencrypt/acme.json
chmod 600 ./letsencrypt/acme.json

Step 2: Installing and Configuring Traefik

https://www.cloudflare.com/learning/dns/dns-records/dns-a-record/
https://wiki.aeoneros.com/books/glusterfs-keepalived-setup/chapter/glusterfs
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/chapter/configuration


Traefik documentation for more information.

docker-compose.yaml
version: '3.8'
services:
  traefik:
    image: "traefik:v3.3"
    container_name: traefik
    hostname: traefik
    command:
      - --entrypoints.web.address=:80
      - --entrypoints.websecure.address=:443
      - --providers.docker
      - --providers.docker.exposedByDefault=false
      - --api    
      - --certificatesresolvers.le.acme.email=your-email@example.com
      - --certificatesresolvers.le.acme.storage=/letsencrypt/acme.json
      - --certificatesresolvers.le.acme.tlschallenge=true
      - --log.level=ERROR
      - --accesslog=true
    ports:
      - 80:80
      - 443:443
    volumes:
      - "/var/run/docker.sock:/var/run/docker.sock:ro"
      - "./letsencrypt:/letsencrypt"
    labels:
      - "traefik.enable=true"
      - "traefik.http.routers.traefik.rule=Host(traefik.example.com)"
      - "traefik.http.routers.traefik.service=api@internal"
      - "traefik.http.routers.traefik.tls=true"
      - "traefik.http.routers.traefik.tls.certresolver=le"
      - "traefik.http.routers.traefik.entrypoints=websecure"
      - "traefik.http.routers.traefik.middlewares=authtraefik"
      - "traefik.http.middlewares.authtraefik.basicauth.users=your-user:$$your-password"
    restart: unless-stopped

https://doc.traefik.io/traefik/middlewares/http/basicauth/


You can now integrate automatic certification for your apps by adding configurations to the docker-
compose.yaml  file for the Whoami app:

Start the services with the following command (only works if your working directory is where your
docker-compose.yaml  file is saved):

You should now be able to access your Whoami application over HTTPS, secured by a Let's Encrypt
certificate.

In this guide, we demonstrated how to set up Traefik as a reverse proxy with Let's Encrypt TLS-
Challenge to secure a simple Whoami application. By following these steps, you can easily apply
the same configuration to your own services and ensure secure communication with HTTPS.

Replace your-email@example.com  with your actual email address and traefik.example.com  with
your Traefik dashboard domain name.

Step 3: Integrating Let's Encrypt

  whoami:
    image: containous/whoami
    restart: always
    labels:
      - "traefik.enable=true"
      - "traefik.http.routers.whoami.rule=Host(whoami.example.com)"
      - "traefik.http.routers.whoami.entrypoints=websecure"
      - "traefik.http.routers.whoami.tls=true"
      - "traefik.http.routers.whoami.tls.certresolver=le"
      - "traefik.http.routers.whoami.service=whoami"
      - "traefik.http.routers.whoami.priority=100"
      - "traefik.http.services.whoami.loadbalancer.server.port=80"

Remember to replace whoami.example.com  with your actual domain name.

Step 4: Starting the Services

docker-compose up -d

Conclusion



Revision #13
Created 12 September 2024 14:13:40 by aeoneros
Updated 11 February 2025 12:09:35 by aeoneros


