
This plugin ensures that incoming requests must originate from Cloudflare’s network (or other
CIDRs that you explicitly allow). It is particularly useful when you only want Cloudflare-proxied
traffic to reach your services. By using Cloudflare’s IP ranges, the plugin can block all other sources
of traffic and help enhance security.

Cloudflare Plugin (Allow only
CF-Traffic to your Server)

Overview

Plugin Page

Requirements

https://plugins.traefik.io/plugins/65a1d28f0f0494247310c69d/cloudflare
https://github.com/agence-gaya/traefik-plugin-cloudflare
https://plugins.traefik.io/plugins/65a1d28f0f0494247310c69d/cloudflare

A working Traefik setup (for instance, Traefik Reverse Proxy for Docker Swarm).
A valid DNS-01 Challenge configuration with Cloudflare to manage certificates (see
Docker Compose with Let's Encrypt DNS Challenge).

�� Only allow traffic originating from Cloudflare IP v4 and v6
��️ Custom CIDRs list can be added to allow requests not from Cloudflare
♻️ Refresh Cloudflare CIDRs from the Cloudflare API
⚙️ Handle X-Forwarded-For original header to allow Cloudflare requests from a trusted
reverse proxy behind Traefik
��️ Rewrite requests X-Forwarded-For header with the user IP provided by CF-Connecting-IP
�� Rewrite requests X-Forwarded-Proto header with the scheme provided by CF-Visitor
�� Rewrite requests X-Real-IP header with the user IP provided by CF-Connecting-IP
�� Rewrite RemoteAddress to permit Traefik ipwhitelist middleware to work on IP provided
by CF-Connecting-IP

Key Type Defaul
t

Description

trustedCIDRs []string [] Requests coming from a source not matching any of these CIDRs will
be terminated with a 403. If empty, it is populated with Cloudflare’s
CIDRs.

allowedCIDRs []string [] Requests coming from a source matching any of these CIDRs will not
be terminated with a 403 and no overwrite of request header append.

refreshInterval time.Durati
on

24h When trustedCIDRs is empty, Cloudflare’s CIDRs will be refreshed after
this duration. Using a value of 0 seconds disables the refresh.

overwriteRequestHeader bool true When true , the request’s header is rewritten. When false , any
header or Traefik RemoteAddress is modified, filtering only the request
from Cloudflare IP.

appendXForwardedFor bool false Works only when overwriteRequestHeader is true . When true , prepend
Cloudflare IP to X-Forwarded-For instead of replacing the first value.

debug bool false Output debug messages in Traefik logs.

With these prerequisites in place, you can integrate the Cloudflare plugin to filter and rewrite
traffic so that only Cloudflare IP ranges can access your services through Traefik.

Features

Configuration
Plugin Options

https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/docker-compose-with-lets-encrypt-dns-challenge-cloudflare-recommended
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/docker-compose-with-lets-encrypt-dns-challenge-cloudflare-recommended
https://api.cloudflare.com/client/v4/ips

In your static configuration file (for instance, static.yaml or static.toml), add the above lines under
the experimental section to enable the plugin. Ensure Traefik is restarted or reloaded to pick up
these changes.

To configure and instantiate the plugin, you need a dynamic configuration file as well. This can be
in YAML , TOML , or another format supported by Traefik.

1. Create a dedicated file at /mnt/glustermount/data/traefik_data/dynamic/http.plugins.yaml (or a
suitable location).

Traefik Static Configuration
experimental:
 plugins:
 cloudflare:
 moduleName = "github.com/agence-gaya/traefik-plugin-cloudflare"
 version = "v1.2.0"

Where to Add This?

Dynamic Configuration

http:
 middlewares:
 cloudflare:
 plugin:
 cloudflare:
 trustedCIDRs: []
 overwriteRequestHeader: true

 routers:
 foo-router:
 rule: Path(`/foo`)
 service: foo-service
 entryPoints:
 - web
 middlewares:
 - cloudflare

Step-by-Step: Creating a http.plugins.yaml File

2. Paste the dynamic configuration for the plugin into this file. For example:

http:
 middlewares:
 cloudflare:
 plugin:
 cloudflare:
 trustedCIDRs: []
 allowedCIDRs: []
 refreshInterval: 24h
 overwriteRequestHeader: true
 appendXForwardedFor: false
 debug: false

 routers:
 foo-router:
 rule: Path(`/foo`)
 service: foo-service
 entryPoints:
 - web
 middlewares:
 - cloudflare

 services:
 foo-service:
 loadBalancer:
 servers:
 - url: "http://127.0.0.1:8080"

3. Reference this dynamic file in your Traefik static configuration (e.g., --
providers.file.filename=/mnt/glustermount/data/traefik_data/dynamic/http.plugins.yaml).

4. Restart or reload Traefik to apply these changes.

To ensure that the plugin is blocking traffic not coming from Cloudflare, you can attempt a cURL
request from a source IP that is not one of Cloudflare’s documented IP ranges:

Verifying the Plugin Works

curl -kH "Host: test.aeoneros.com" https://<public-ip>

You should receive a 403 (Forbidden) response if your IP is not allowed. If you route through
Cloudflare, the request should pass normally.

Once loaded, these plugins behave like statically compiled middlewares. Their instantiation and
behavior are driven by the dynamic configuration. For example, you can add multiple plugins in the
experimental section of your static config, and then configure them in your dynamic config
similarly to built-in middlewares.

Visit the Traefik Plugin Catalog for more community-contributed plugins.

Middleware Plugins in Traefik

Revision #6
Created 4 February 2025 14:46:41 by aeoneros
Updated 11 February 2025 10:19:27 by aeoneros

https://plugins.traefik.io/plugins

