
Traefik integrates tightly with Docker Swarm, using the Docker API to automatically discover
services. In Swarm Mode, Traefik watches for service-level labels rather than container-level
labels (which are used in standalone Docker mode). This allows Traefik to dynamically adapt as
services are created, updated, or removed.

Beginner-Guide: Traefik &
Docker Swarm

How Traefik Works with Docker Swarm

Benefits of Using Traefik with Docker Swarm:

https://doc.traefik.io/traefik/providers/swarm/
https://doc.traefik.io/traefik/providers/swarm/

Dynamic Service Discovery: Traefik automatically finds and configures services based
on Docker labels, which eliminates the need for manually updating configuration files.
Scalability: Traefik automatically adjusts routing as new instances of services are scaled
up or down.
Real-Time Updates: As services are added or removed in Swarm, Traefik updates
routing rules without needing restarts or manual intervention.

Let’s walk through an example where we deploy Traefik as a reverse proxy in a Docker Swarm
environment. We’ll expose a simple web service and configure routing with labels.

First, we need to deploy Traefik as a service in the Docker Swarm cluster. Traefik requires access to
the Docker socket to monitor the containers and services. Here's how to deploy Traefik with Docker
Swarm using Docker Compose:

Example: Deploying Traefik with Docker
Swarm

1. Setting Up Traefik in Docker Swarm

version: '3.7'
services:
 traefik:
 image: traefik:v3.0
 command:
 - "--api.insecure=true" # Exposes Traefik's dashboard
 - "--providers.docker=true" # Enables Docker as the provider
 - "--entrypoints.web.address=:80" # Defines an HTTP EntryPoint on port 80
 ports:
 - "80:80" # Expose Traefik's HTTP EntryPoint
 - "8080:8080" # Expose the Traefik Dashboard
 volumes:
 - "/var/run/docker.sock:/var/run/docker.sock" # Access Docker API
 deploy:
 placement:
 constraints:
 - node.role == manager # Only run on Swarm manager nodes

Explanation:

providers.docker=true : Enables Traefik to use Docker as a provider.
entrypoints.web.address=:80 : Defines an HTTP EntryPoint listening on port 80.
api.insecure=true : Enables Traefik's web dashboard (only for demonstration purposes, not
recommended in production).

Next, let’s deploy a simple web service, such as Nginx, and attach routing labels so that Traefik can
automatically route traffic to it.

Explanation:

traefik.enable=true : Tells Traefik to expose this service.
traefik.http.routers.nginx.rule=Host('nginx.local') : Defines a routing rule that routes requests
with the Host header nginx.local to this service.
traefik.http.services.nginx.loadbalancer.server.port=80 : Specifies the internal port for Nginx.

2. Deploying a Service with Routing Labels

version: '3.7'
services:
 nginx:
 image: nginx
 deploy:
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.nginx.rule=Host(`nginx.local`)"
 - "traefik.http.services.nginx.loadbalancer.server.port=80"

Now, you can deploy this configuration in your Swarm cluster with:
docker stack deploy -c docker-compose.yml my-stack
Or you can run the Stack in Portainer :)

Traefik does not automatically detect ports in Docker Swarm mode. You must explicitly set the
port label (traefik.http.services.<service_name>.loadbalancer.server.port) to tell Traefik which port to use
for the service. This ensures that Traefik can properly route requests to the service.

If you are exposing containers configured with host networking, Traefik resolves the host IP
based on the following priorities:

1. host.docker.internal
2. host.containers.internal
3. If both fail, it falls back to 127.0.0.1 .

By default, Traefik prioritizes the IPv4 address of a container, even in an IPv6-enabled Docker
stack. If you want Traefik to use the IPv6 address, make sure your Docker configuration supports
IPv6 routing.

In Docker Swarm mode, only manager nodes can access the Docker Swarm API, which Traefik
needs to dynamically discover services. Therefore, you must schedule Traefik on manager nodes.
Here’s how to do it:

Example for Docker Compose:

Understanding Key Configuration
Elements
Port Detection in Docker Swarm

Host Networking with Traefik

IPv4 and IPv6

Scheduling Traefik on Swarm Nodes

services:
 traefik:
 image: traefik:v3.0
 deploy:

Since Traefik requires access to the Docker API via the docker.sock socket, this raises potential
security risks. Anyone with access to Traefik can also gain access to the Docker API and, by
extension, the underlying host. To mitigate this risk:

Only expose the Docker socket to trusted services.
Consider securing the Docker socket with a TLS connection.

Here’s an example of a secure Docker API configuration with TLS:

 placement:
 constraints:
 - "node.role == manager"

Docker API Access and Security
Considerations

providers:
 swarm:
 tls:
 cert: "/path/to/cert.crt"
 key: "/path/to/key.key"
 ca: "/path/to/ca.crt"

This configuration ensures that the Docker API connection is secured using TLS.

Conclusion

Traefik’s integration with Docker Swarm provides a powerful, dynamic solution for managing
services at scale. By using labels on services, Traefik can automatically discover, configure, and
route traffic without the need for manual intervention. It’s particularly useful for dynamic
environments where services are frequently added or removed, as Traefik handles these changes
in real time.

This beginner-friendly overview of Traefik with Docker Swarm should give you a solid foundation for
deploying and routing your services dynamically. As you become more familiar, you can explore
advanced configurations such as load balancing strategies, security features, and using external
providers like Kubernetes.

Revision #3
Created 12 September 2024 13:59:57 by aeoneros
Updated 12 January 2025 11:26:08 by aeoneros

