
Docker-compose with Let's Encrypt: TLS Challenge
Docker-compose with Let's Encrypt: DNS Challenge & Cloudflare (Recommended)
Docker-compose with Let's Encrypt : HTTP Challenge

Practical Guides:
HTTPS with Let's
Encrypt

This guide provides information on how to set up a simple TLS-Challenge for Traefik to use Let's
Encrypt and certify your domains/websites. We will configure Traefik to act as a reverse proxy for a
simple "Whoami" application and secure the app using Let's Encrypt.

Understanding TLS: Check this guide.
Understanding Let's Encrypt: Check this guide.

The TLS-ALPN-01 challenge is a method used by Let's Encrypt to verify domain ownership.
Instead of using the HTTP challenge, it leverages the TLS handshake to validate the domain. This is
especially useful for environments where port 80 is blocked or cannot be used.

Docker-compose with Let's
Encrypt: TLS Challenge

Introduction

Overview of TLS-Challenge

Difference Between HTTP-Challenge & TLS-Challenge

https://doc.traefik.io/traefik/user-guides/docker-compose/acme-tls/
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/tls-how-does-it-work-more
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/lets-encrypt-how-does-it-work-more
https://wiki.aeoneros.com/uploads/images/gallery/2025-02/Iy2hDpUwtWE42t4S-screenshot-from-2023-05-21-15-53-42-1.png

The HTTP Challenge uses HTTP requests on port 80 to verify domain ownership by serving a
specific file at http://your-domain/.well-known/acme-challenge/ . The TLS Challenge verifies ownership
during the TLS handshake on port 443 by presenting a special certificate, making it more suitable
for HTTPS-only environments or when port 80 is blocked.

For the TLS challenge you will need:

A publicly accessible host allowing connections on port 443 with docker & docker-
compose installed.
A DNS record with the domain you want to expose pointing to this host.

Before proceeding, make sure your domain name is correctly configured. Create a DNS A Record
that points your domain to the public IP address of your server.

If you don't know what a DNS A Record is, check out this post from Cloudflare.

In this guide, we will use GlusterFS (only needed when using Docker Swarm).
Feel free to adjust your paths as needed.

There are multiple ways to set up your Traefik configuration—either directly in the docker-

compose.yaml file or by outsourcing it to external configuration files. Find more information here.

In this step, we provide the option traefik.http.routers.traefik.middlewares=authtraefik , which is optional
but highly recommended to secure your Traefik dashboard with login authentication. Check out the

Prerequisite

Step 0: Configuring DNS Records

Step 1: Create ACME File

mkdir ./letsencrypt
touch ./letsencrypt/acme.json
chmod 600 ./letsencrypt/acme.json

Step 2: Installing and Configuring Traefik

https://www.cloudflare.com/learning/dns/dns-records/dns-a-record/
https://wiki.aeoneros.com/books/glusterfs-keepalived-setup/chapter/glusterfs
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/chapter/configuration

Traefik documentation for more information.

docker-compose.yaml
version: '3.8'
services:
 traefik:
 image: "traefik:v3.3"
 container_name: traefik
 hostname: traefik
 command:
 - --entrypoints.web.address=:80
 - --entrypoints.websecure.address=:443
 - --providers.docker
 - --providers.docker.exposedByDefault=false
 - --api
 - --certificatesresolvers.le.acme.email=your-email@example.com
 - --certificatesresolvers.le.acme.storage=/letsencrypt/acme.json
 - --certificatesresolvers.le.acme.tlschallenge=true
 - --log.level=ERROR
 - --accesslog=true
 ports:
 - 80:80
 - 443:443
 volumes:
 - "/var/run/docker.sock:/var/run/docker.sock:ro"
 - "./letsencrypt:/letsencrypt"
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.traefik.rule=Host(traefik.example.com)"
 - "traefik.http.routers.traefik.service=api@internal"
 - "traefik.http.routers.traefik.tls=true"
 - "traefik.http.routers.traefik.tls.certresolver=le"
 - "traefik.http.routers.traefik.entrypoints=websecure"
 - "traefik.http.routers.traefik.middlewares=authtraefik"
 - "traefik.http.middlewares.authtraefik.basicauth.users=your-user:$$your-password"
 restart: unless-stopped

https://doc.traefik.io/traefik/middlewares/http/basicauth/

You can now integrate automatic certification for your apps by adding configurations to the docker-
compose.yaml file for the Whoami app:

Start the services with the following command (only works if your working directory is where your
docker-compose.yaml file is saved):

You should now be able to access your Whoami application over HTTPS, secured by a Let's Encrypt
certificate.

In this guide, we demonstrated how to set up Traefik as a reverse proxy with Let's Encrypt TLS-
Challenge to secure a simple Whoami application. By following these steps, you can easily apply
the same configuration to your own services and ensure secure communication with HTTPS.

Replace your-email@example.com with your actual email address and traefik.example.com with
your Traefik dashboard domain name.

Step 3: Integrating Let's Encrypt

 whoami:
 image: containous/whoami
 restart: always
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.whoami.rule=Host(whoami.example.com)"
 - "traefik.http.routers.whoami.entrypoints=websecure"
 - "traefik.http.routers.whoami.tls=true"
 - "traefik.http.routers.whoami.tls.certresolver=le"
 - "traefik.http.routers.whoami.service=whoami"
 - "traefik.http.routers.whoami.priority=100"
 - "traefik.http.services.whoami.loadbalancer.server.port=80"

Remember to replace whoami.example.com with your actual domain name.

Step 4: Starting the Services

docker-compose up -d

Conclusion

This guide aims to demonstrate how to create a certificate with the Let's Encrypt DNS-01 Challenge
to use HTTPS on a simple service exposed with Traefik.

Using the DNS-01 Challenge instead of TLS-ALPN-01 provides several advantages:

1. Wildcard Certificates: DNS-01 is the only challenge type that supports wildcard
domains (e.g., *.example.com), simplifying the management of multiple subdomains.

2. No Open Ports Required: Unlike TLS-ALPN, DNS-01 doesn’t rely on ports 443 or 80
being open, offering better security and flexibility for non-web services.

3. Multi-Server and Complex Setups: DNS-01 works in distributed or multi-server
environments without requiring direct communication from Let's Encrypt to each server.

4. Behind Proxies or Firewalls: Ideal for servers behind NAT, private networks, or reverse
proxies where direct access to the server is limited.

The DNS-01 Challenge is a method used by Let's Encrypt to verify domain ownership by creating a
specific DNS TXT record for the domain. This challenge is particularly useful for issuing wildcard
certificates (*.example.com), securing services that are not publicly accessible, and environments
where direct access to ports 80 or 443 is not possible. It provides flexibility and higher security,
especially when combined with automated DNS providers like Cloudflare.

Docker-compose with Let's
Encrypt: DNS Challenge &
Cloudflare (Recommended)

Introduction

Why Use DNS-01 Challenge Instead of TLS?

Overview of DNS-01 Challenge

https://doc.traefik.io/traefik/user-guides/docker-compose/acme-dns/

A publicly accessible host allowing connections on port 443 with Docker and Docker
Compose installed.
A working DNS provider (e.g., Cloudflare) with credentials to create and remove DNS
records.
If you use a 3rd-party hosting provider, make sure your domain uses Cloudflare's
nameservers. Learn more about changing nameservers in this guide.

To add your domain to the Cloudflare dashboard, follow Cloudflare's full setup guide: Cloudflare
Guide.

Log in to your hosting provider's control panel and change your domain's nameservers to
Cloudflare's. This process may take up to 24 hours to propagate. For more information or an
Example, check this guide.

Log in to Cloudflare and navigate to API Tokens. Click "Create Token".

Prerequisite

Step 0: Add Domain to Cloudflare

Step 1: Change Nameservers to Cloudflare

When changing the NS, most Hosting Providers take up to 24h to update them.
Make Sure to ask your Hoster for more Informations

Step 2: Create a Custom Cloudflare API
Token

https://support.hostpoint.ch/en/technical/dns/dns-changes/how-can-i-change-the-nameservers-for-my-domain
https://developers.cloudflare.com/dns/zone-setups/full-setup/setup/
https://developers.cloudflare.com/dns/zone-setups/full-setup/setup/
https://support.hostpoint.ch/en/technical/dns/dns-changes/how-can-i-change-the-nameservers-for-my-domain
https://dash.cloudflare.com/profile/api-tokens
https://wiki.aeoneros.com/uploads/images/gallery/2025-02/PIC8T4Z13MgCIFOI-cloudflare-token-create-token.png

Steps to create the token:

1. Give your token a descriptive name (e.g., "Homelab Traefik API-Token").
2. Set the permissions as shown in the example image (Zone → Zone [Read], Zone → Zone

Settings [Read], Zone → DNS [Edit]).
3. Select your domain.
4. Click "Continue to Summary" and create the token.

https://wiki.aeoneros.com/uploads/images/gallery/2025-02/ePotZO8hqwliUbIv-cloudflare-token-settings-numbers.png

Zone → Zone (Read):
Allows read-only access to basic information about the specified zone (e.g., DNS records,
configuration, status, etc.).
Zone → Zone Settings (Read):
Grants read-only access to view the zone’s settings (e.g., SSL/TLS settings, security settings, and
performance configurations).
Zone → DNS (Edit):
Allows full control over DNS records in the specified zone. This means you can create, edit, and
delete DNS records.

Go to your Traefik folder and create a file to store your Cloudflare API token securely:

Paste your token in the file, then save and close it (CTRL+O, CTRL+X).

The acme.json file stores Let's Encrypt certificates, keys, and account information in JSON format
for Traefik's ACME integration.
Ensure the file is created and secured with the Rights 600:

What Does These Permissions do?

Step 3: Create a Local API Token File
In This Step you could also Work with Docker Secrets. I did not get it Working with the
Docker Secret, that why i put it in a File. If you want to use a Docker Secret, please visit
Official Docker Docs: https://docs.docker.com/compose/how-tos/use-secrets/

nano ./traefik_data/cloudflare_api_token

Step 4: Create the ACME.json File

mkdir ./letsencrypt
touch ./letsencrypt/acme.json
chmod 600 ./letsencrypt/acme.json

Step 5: Adjust Your Traefik Docker-
Compose File

https://docs.docker.com/compose/how-tos/use-secrets/

Mount your Cloudflare API token file and set the appropriate environment variables:

You can also use a static.yaml or static.toml file for this configuration. Check out this guide for more
information.

In This Step you could also Work with Docker Secrets. I did not get it Working with theDocker
Secret, that why i put it in a File. If you want to use a Docker Secret, please visit Official
Docker Docs: https://docs.docker.com/compose/how-tos/use-secrets/

Example Docker Compose Configuration:

services:
 traefik:
 image: "traefik:v3.3"
 volumes:
 - "./traefik_data/cloudflare_api_token:/cloudflare_api_token:ro"
 - "./letsencrypt:/letsencrypt"
 environment:
 - TZ=Europe/Zurich
 - CF_API_EMAIL=yourmail@example.com
 - CF_DNS_API_TOKEN_FILE=/cloudflare_api_token

Step 6: Adjust your Traefik Config

You can Change the Value "leresolver" to your own Resolvername. Make sure to adjust
your Traefik Router Labels/Settings.
Make Sure to Adjust the Variable "yourmail@example.com" to your actual Email.

Example for Traefik CLI:

 command:
 - --certificatesresolvers.leresovler.acme.email=yourmail@example.com
 - --certificatesresolvers.leresovler.acme.storage=/letsencrypt/acme.json
 - --certificatesresolvers.myresolver.acme.caserver=https://acme-v02.api.letsencrypt.org/directory
 - --certificatesresolvers.myresolver.acme.dnschallenge.provider=cloudflare
 - --certificatesresolvers.leresovler.acme.dnschallenge.delaybeforecheck=0
 - --certificatesresolvers.leresovler.acme.dnschallenge.resolvers=1.1.1.1:53,1.0.0.1:53,8.8.8.8:53

Example for a static.yaml:

https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/chapter/configuration
https://docs.docker.com/compose/how-tos/use-secrets/

Restart Traefik and make sure your application routers are configured to use the leresolver for
certificate generation.
Have fun Troubbleshooting. You can Change your Traefik-Log-Level to DEBUG for further
Troubbleshooting.

certificatesResolvers:
 leresovler:
 acme:
 email: 'yourmail@example.com'
 storage: '/letsencrypt/acme.json'
 caServer: 'https://acme-v02.api.letsencrypt.org/directory'
 dnsChallenge:
 provider: 'cloudflare'
 delayBeforeCheck: '0'
 resolvers:
 - '1.1.1.1:53'
 - '1.0.0.1:53'
 - '8.8.8.8:53'

Example for static.toml:

[certificatesResolvers.leresolver.acme]
 email = "yourmail@example.com"
 storage = "/letsencrypt/acme.json"
 caServer = "https://acme-v02.api.letsencrypt.org/directory"

 [certificatesResolvers.leresolver.acme.dnsChallenge]
 provider = "cloudflare"
 delayBeforeCheck = 0
 resolvers = ["1.1.1.1:53", "1.0.0.1:53", "8.8.8.8:53"]

Step 7: Restart Traefik

Additional Tips

To improve security, you can add a plugin to allow only Cloudflare traffic to access your
services. Check out this guide.

https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/cloudflare-plugin-allow-only-cf-traffic-to-your-server

This guide provides information on how to set up a simple HTTP-Challenge for Traefik to use Let's
Encrypt and certify your domains/websites. We will configure Traefik to act as a reverse proxy for a
simple "Whoami" application and secure the app using Let's Encrypt.

Understanding Let's Encrypt: Check this guide.

The HTTP-01 challenge is a method used by Let's Encrypt to verify domain ownership. Let's
Encrypt requests a specific file to be available at http://your-domain/.well-known/acme-challenge/ . Traefik
serves this file, and Let's Encrypt verifies its presence to confirm domain ownership.

Docker-compose with Let's
Encrypt : HTTP Challenge

Introduction

Overview of HTTP-Challenge

Difference Between HTTP-Challenge & TLS-Challenge

https://doc.traefik.io/traefik/user-guides/docker-compose/acme-http/
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/lets-encrypt-how-does-it-work-more
https://wiki.aeoneros.com/uploads/images/gallery/2025-02/Iy2hDpUwtWE42t4S-screenshot-from-2023-05-21-15-53-42-1.png

The HTTP Challenge uses HTTP requests on port 80 to verify domain ownership by serving a
specific file at http://your-domain/.well-known/acme-challenge/ . The TLS Challenge verifies ownership
during the TLS handshake on port 443 by presenting a special certificate, making it more suitable
for HTTPS-only environments or when port 80 is blocked.

For the HTTP challenge you will need:

A publicly accessible host allowing connections on port 80 with Docker and Docker
Compose installed.
A DNS record with the domain you want to expose pointing to this host.

Before proceeding, make sure your domain name is correctly configured. Create a DNS A Record
that points your domain to the public IP address of your server.

If you don't know what a DNS A Record is, check out this post from Cloudflare.

In this guide, we will store the ACME data in a letsencrypt directory within the folder containing your
Docker Compose file. This folder will store your certificates.

There are multiple ways to set up your Traefik configuration—either directly in the docker-

compose.yaml file or by outsourcing it to external configuration files. Find more information here.

In this setup, we will configure the HTTP challenge for Let's Encrypt directly in the docker-
compose.yaml file.

Prerequisite

Step 0: Configuring DNS Records

Step 1: Create ACME File

mkdir ./letsencrypt
touch ./letsencrypt/acme.json
chmod 600 ./letsencrypt/acme.json

Step 2: Installing and Configuring Traefik

docker-compose.yaml

https://www.cloudflare.com/learning/dns/dns-records/dns-a-record/
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/chapter/configuration

You can now integrate automatic certification for your apps by ensuring they are configured with
Traefik labels to use the myresolver certificate resolver.

version: "3.3"
services:
 traefik:
 image: "traefik:v3.3"
 container_name: "traefik"
 command:
 - "--api.insecure=true"
 - "--providers.docker=true"
 - "--providers.docker.exposedbydefault=false"
 - "--entryPoints.web.address=:80"
 - "--entryPoints.websecure.address=:443"
 - "--certificatesresolvers.myresolver.acme.httpchallenge=true"
 - "--certificatesresolvers.myresolver.acme.httpchallenge.entrypoint=web"
 - "--certificatesresolvers.myresolver.acme.email=yourmail@example.com"
 - "--certificatesresolvers.myresolver.acme.storage=/letsencrypt/acme.json"
 ports:
 - "80:80"
 - "443:443"
 - "8080:8080"
 volumes:
 - "./letsencrypt:/letsencrypt"
 - "/var/run/docker.sock:/var/run/docker.sock:ro"

Replace yourmail@example.com with your actual email address and whoami.example.com with
your domain name.

Step 3: Integrating Let's Encrypt

 whoami:
 image: "traefik/whoami"
 container_name: "simple-service"
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.whoami.rule=Host(`whoami.example.com`)"
 - "traefik.http.routers.whoami.entrypoints=websecure"

Start the services with the following command (only works if your working directory is where your
docker-compose.yaml file is saved):

You should now be able to access your Whoami application over HTTPS, secured by a Let's Encrypt
certificate.

In this guide, we demonstrated how to set up Traefik as a reverse proxy with Let's Encrypt using
the HTTP-Challenge to secure a simple Whoami application. By following these steps, you can apply
the same configuration to your own services and ensure secure communication with HTTPS.

 - "traefik.http.routers.whoami.tls.certresolver=myresolver"

Step 4: Starting the Services

docker-compose up -d

Conclusion

