
Overview HTTPS & TLS
How SSL Certificates Work: A Breakdown
TLS
Let's Encrypt
Setting up Self-Signed Multiple FQDN Certificates for Local Services in Traefik

HTTPS & TLS

Traefik supports HTTPS & TLS, which concerns roughly two parts of the configuration:

Routers: Define how HTTPS traffic is handled.
TLS Connection: Manage certificates and TLS-specific settings.

When a router needs to handle HTTPS traffic, it should include a tls field in its definition. For
detailed instructions, refer to the TLS section of the routers documentation.

To configure the TLS connection itself, you need to:

Obtain TLS Certificates: This can be done either through:
Dynamic Configuration: Define certificates directly in your dynamic
configuration files.
Let’s Encrypt (ACME): Automate certificate generation and renewal. Refer to
Let’s Encrypt (ACME) Wiki Post for more details.

Configure TLS Options: Set security policies like minimum TLS version and cipher
suites.
Manage Certificate Stores: Store and retrieve certificates used in TLS connections.

Overview HTTPS & TLS

For Automated Certification Check this post:
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/lets-encrypt

Configuring HTTPS in Routers

Managing TLS Connections

Example: Configuring HTTPS in a Router

https://doc.traefik.io/traefik/https/overview/
https://doc.traefik.io/traefik/routing/routers/#tls
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/lets-encrypt
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/lets-encrypt

http:
 routers:
 secure-router:
 rule: "Host(`example.com`)"
 entryPoints:
 - websecure
 service: my-service
 tls:
 certResolver: "myresolver"

Example: Defining Certificates in Dynamic
Configuration

tls:
 certificates:
 - certFile: "/path/to/cert.crt"
 keyFile: "/path/to/cert.key"

Example: Using Let’s Encrypt with ACME
certificatesResolvers:
 myresolver:
 acme:
 email: "your-email@domain.com"
 storage: "/acme.json"
 httpChallenge:
 entryPoint: "web"

TLS Options Example
tls:
 options:
 default:
 minVersion: VersionTLS12
 cipherSuites:

For a deeper dive into certificate management, TLS options, and other HTTPS configurations, see
the official Traefik documentation.

 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

https://doc.traefik.io/traefik/https/overview/

SSL stands for Secure Sockets Layer, a protocol for encrypting, securing, and authenticating
communications on the Internet. Although SSL has been replaced by TLS (Transport Layer
Security), the term "SSL" is still widely used to describe this technology.

Securing communications between a client and a server (e.g., web browsers and
websites)
Securing email, VoIP, and other communications over unsecured networks

SSL/TLS operates based on several key principles:

A secure connection begins with a TLS handshake, where the client and server exchange
public keys and establish a secure session.
Session keys are generated during the handshake and used to encrypt/decrypt all
communications within the session.
Each session uses unique session keys.
TLS authenticates the server's identity to ensure it is legitimate.

How SSL Certificates Work: A
Breakdown

What is SSL?

Primary Use Cases

How does SSL/TLS work?

https://www.cloudflare.com/learning/ssl/how-does-ssl-work/

Data integrity is ensured using a message authentication code (MAC).

The TLS handshake is the process by which two parties establish a secure connection. This
involves:

Asymmetric encryption: Public and private keys are used for secure communication
during the handshake.
Session keys: Generated during the handshake and used for symmetric encryption for
the remainder of the session.

After the handshake, both parties use the same session key for encryption. These keys are
temporary and unique to each session, ensuring high levels of security.

TLS communications include a digital signature (MAC) that authenticates the server and prevents
data alteration during transmission.

An SSL certificate is a data file installed on a website's server. It contains:

The public key
The identity of the website owner
Other identifying information

SSL certificates are essential for enabling encrypted communications using TLS.

Website owners can create self-signed certificates, but these are not as trusted as certificates
issued by a certificate authority (CA).

The TLS Handshake

Symmetric Encryption

Authenticating the Origin Server

What is an SSL Certificate?

Self-Signed Certificates

Obtaining an SSL Certificate

SSL certificates are issued by certificate authorities (CAs) after verifying the website owner’s
identity. The CA maintains a copy of the certificates they issue.

Many CAs charge for SSL certificates, but some, like Cloudflare, offer them for free to encourage
secure Internet practices.

HTTPS is HTTP with SSL/TLS encryption. A website using HTTPS:

Has a valid SSL certificate issued by a CA
Encrypts all traffic to and from the website
Ensures data authenticity and integrity

Modern browsers mark HTTP websites as "not secure," making HTTPS essential for trust and
security.

For further details on SSL/TLS, visit the official Traefik documentation.

Free SSL Certificates

HTTP vs. HTTPS

https://doc.traefik.io/traefik/https/overview/

For automated TLS certificate management, Traefik integrates with Let’s Encrypt. See detailed
instructions in this Let’s Encrypt guide.

To add or remove TLS certificates dynamically, define them in the tls.certificates section of the
dynamic configuration:

Note: In Kubernetes, certificates must be provided as secrets instead of using the file provider.

TLS

Automated Certification via Let’s Encrypt

User-Defined Certificates

File (YAML)
Dynamic configuration
tls:
 certificates:
 - certFile: /path/to/domain.cert
 keyFile: /path/to/domain.key
 - certFile: /path/to/other-domain.cert
 keyFile: /path/to/other-domain.key

File (TOML)

Certificates Stores

https://doc.traefik.io/traefik/https/tls/
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm/page/lets-encrypt

In Traefik, certificates are grouped in certificate stores:

By default, all certificates are stored in the default store. Any additional store definitions are
ignored.

Traefik can use a default certificate for connections without SNI or matching domains. Define the
default certificate in a TLS store:

ACME Default Certificate: Traefik can also generate a default certificate using an ACME provider:

File (YAML)
Dynamic configuration
tls:
 stores:
 default: {}

File (YAML): Specifying Certificate Stores
Dynamic configuration
tls:
 certificates:
 - certFile: /path/to/domain.cert
 keyFile: /path/to/domain.key
 stores:
 - default
 - certFile: /path/to/other-domain.cert
 keyFile: /path/to/other-domain.key

Default Certificate

File (YAML)
Dynamic configuration
tls:
 stores:
 default:
 defaultCertificate:
 certFile: /path/to/cert.crt
 keyFile: /path/to/cert.key

The TLS options allow you to configure parameters of the TLS connection:

File (YAML)
Dynamic configuration
tls:
 stores:
 default:
 defaultGeneratedCert:
 resolver: myresolver
 domain:
 main: example.org
 sans:
 - foo.example.org
 - bar.example.org

TLS Options

Default TLS Option
Dynamic configuration
tls:
 options:
 default:
 minVersion: VersionTLS12

Minimum and Maximum TLS Version
Dynamic configuration
tls:
 options:
 default:
 minVersion: VersionTLS12
 maxVersion: VersionTLS13

Cipher Suites
Dynamic configuration
tls:

For more information, refer to the official Traefik documentation.

 options:
 default:
 cipherSuites:
 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

https://doc.traefik.io/traefik/https/overview/

Traefik can automatically generate and renew TLS certificates using an ACME provider, such as
Let’s Encrypt. This simplifies certificate management while ensuring secure HTTPS connections.

Let’s Encrypt imposes rate limits for API requests, which last up to one week and cannot be
overridden. To avoid reaching these limits:

Persist the acme.json file across container restarts to prevent Traefik from requesting new
certificates unnecessarily.
Use the Let’s Encrypt staging server with the caServer configuration option for testing.

Certificate resolvers are defined in the static configuration and retrieve certificates from an ACME
server. Each router that requires a certificate must reference a resolver explicitly using the
tls.certresolver option.

Domain Definition: Certificates are requested for domain names specified in the router’s
dynamic configuration. Multiple domain names are supported, with one acting as the main
domain and others as Subject Alternative Names (SANs).
ACME Challenges: Each resolver must define an ACME challenge type: HTTP-01, DNS-01,
or TLS-ALPN-01.

Let's Encrypt

Overview

Let’s Encrypt and Rate Limiting

Certificate Resolvers

Configuration Reference

https://doc.traefik.io/traefik/https/acme/

Configuration Examples
Enable ACME

Static configuration
dentryPoints:
 web:
 address: ":80"

 websecure:
 address: ":443"

certificatesResolvers:
 myresolver:
 acme:
 email: your-email@example.com
 storage: acme.json
 httpChallenge:
 entryPoint: web

Single Domain from Router’s Rule
Dynamic configuration
labels:
 - traefik.http.routers.blog.rule=Host(`example.com`) && Path(`/blog`)
 - traefik.http.routers.blog.tls=true
 - traefik.http.routers.blog.tls.certresolver=myresolver

Multiple Domains from Router’s Rule
Dynamic configuration
labels:
 - traefik.http.routers.blog.rule=(Host(`example.com`) && Path(`/blog`)) || Host(`blog.example.org`)
 - traefik.http.routers.blog.tls=true
 - traefik.http.routers.blog.tls.certresolver=myresolver

Multiple Domains from Router’s tls.domain

Dynamic configuration
labels:
 - traefik.http.routers.blog.rule=Host(`example.com`) && Path(`/blog`)
 - traefik.http.routers.blog.tls=true
 - traefik.http.routers.blog.tls.certresolver=myresolver
 - traefik.http.routers.blog.tls.domains[0].main=example.com
 - traefik.http.routers.blog.tls.domains[0].sans=*.example.org

ACME Challenges
HTTP-01 Challenge

Static configuration
entryPoints:
 web:
 address: ":80"
 websecure:
 address: ":443"

certificatesResolvers:
 myresolver:
 acme:
 httpChallenge:
 entryPoint: web

DNS-01 Challenge
Static configuration
certificatesResolvers:
 myresolver:
 acme:
 dnsChallenge:
 provider: digitalocean

Traefik manages 90-day certificates and renews them automatically 30 days before expiry. For
resolvers issuing custom-duration certificates, configure the renewal duration with the
certificatesDuration option.

For more details, refer to the official Traefik documentation.

 delayBeforeCheck: 0
 resolvers:
 - "1.1.1.1:53"
 - "8.8.8.8:53"

TLS-ALPN-01 Challenge
Static configuration
certificatesResolvers:
 myresolver:
 acme:
 tlsChallenge: {}

Automatic Renewals

https://doc.traefik.io/traefik/https/overview/

In this article, we will walk through creating a self-signed certificate for multiple local services (e.g.,
Portainer and Pi-hole) using OpenSSL. We'll also configure Traefik to use this certificate in Docker
Swarm. Additionally, we will explain how SSL certificates work, the role of key components like the
private key, public key, and Certification Authority (CA). We'll use the provided image for
understanding these concepts.

You already have Traefik, Portainer, Pi-hole, and Docker Swarm set up.
You have a local DNS setup using Pi-hole to resolve local domain names such as
portainer.local and pihole.local .

Whats FQDN?

FQDN (Fully Qualified Domain Name) is the complete domain name of a specific host within
the internet or a local network. It includes both the hostname and the domain name, ensuring
the address is globally unique. An FQDN typically follows this format: hostname.domain.tld (e.g.,
www.example.com). For local networks, it can be something like portainer.local or pihole.local . The
FQDN provides a precise location for a resource in the DNS hierarchy, making it essential for
properly identifying services across networks.

Setting up Self-Signed
Multiple FQDN Certificates
for Local Services in Traefik

Overview

Prerequisites

Step 1: Create a Multiple FQDN Certificate with OpenSSL

https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm
https://wiki.aeoneros.com/books/portainer
https://wiki.aeoneros.com/books/pihole-setup-guide
https://wiki.aeoneros.com/books/docker-guide/page/getting-started-with-swarm-mode-create-a-swarm
https://doc.traefik.io/traefik/https/tls/

1. Generate a private key for the certificate:

openssl genrsa -out local.key 4096

2. Create a Certificate Signing Request (CSR) for multiple FQDNs. First, create a
configuration file san.cnf :

touch /mnt/glustermount/data/certs/san.cnf

[req] # Request options
default_bits = 4096 # Size of the encryption key
prompt = no # No prompts, all values are provided in the config file
default_md = sha256 # Use SHA256 for the certificate
distinguished_name = dn # Use the 'dn' section for distinguished names
req_extensions = req_ext # Use 'req_ext' for additional extensions like SAN (Subject Alternative
Name)

[dn] # Distinguished Name section
CN = portainer.local # Common Name (CN) for the certificate (primary domain)

[req_ext] # Extensions for the certificate request
subjectAltName = @alt_names # Use alternative names (SAN)

[alt_names] # Alternative domain names
DNS.1 = portainer.local # First DNS name (alternative domain)
DNS.2 = pihole.local # Second DNS name (alternative domain)

3. Generate the CSR using the configuration file:

openssl req -new -key local.key -out local.csr -config san.cnf

4. Generate a self-signed certificate for 1 year (365 days):

openssl x509 -req -in local.csr -signkey local.key -out local.crt -days 365 -extfile san.cnf -extensions
req_ext

5. Move the certificate and key to a shared directory accessible by Docker Swarm:
(If you need help to understand how the Nodes of the Docker Swarm Cluster are sharing
the synced Files - Check this Article)

https://wiki.aeoneros.com/books/glusterfs-keepalived-setup/chapter/glusterfs

mkdir -p /mnt/glustermount/data/certs
mv local.crt local.key /mnt/glustermount/data/certs/

The san.cnf file helps OpenSSL create a certificate with multiple domain names (FQDNs). Here’s a
breakdown of the file:

[req]: Specifies the general options for generating the certificate request, such as key
size, hashing algorithm (SHA256), and the distinguished name section.
[dn]: Defines the common name (CN), which in this case is the primary domain (
portainer.local).
[req_ext]: Specifies the Subject Alternative Names (SANs), which allow the certificate to
be valid for additional domain names (e.g., pihole.local).
[alt_names]: Lists the additional domain names (DNS.1 , DNS.2 , etc.) that will be included
in the certificate.

Edit your traefik.toml file to include the certificate you generated:

Step 2: Understanding the san.cnf File

This setup creates a certificate that can be used for both portainer.local and pihole.local ,
ensuring secure access over HTTPS. You can add any other Local DNS Entry to the List. Just
make sure to add the Entry to your Pihole under the "Local DNS - DNS Records" Section.

Step 3: Add the Certificate to Traefik's Static Configuration
(TOML)

[entryPoints]
 [entryPoints.websecure]
 address = ":443"

[tls]
 [[tls.certificates]]
 certFile = "/mnt/glustermount/data/certs/local.crt"
 keyFile = "/mnt/glustermount/data/certs/local.key"
 stores = ["default"]

This configuration tells Traefik to use the multiple FQDN certificate (local.crt) for requests matching
portainer.local and pihole.local .

Now, configure the dynamic behavior of Traefik using the dynamic.toml file:

[tls.stores]
 [tls.stores.default]
 [tls.stores.default.defaultCertificate]
 certFile = "/mnt/glustermount/data/certs/local.crt"
 keyFile = "/mnt/glustermount/data/certs/local.key"

Step 4: Assign the Self-Signed Certificate to Specific
Services

[http]
 [http.routers]
 [http.routers.portainer-secure]
 rule = "Host(`portainer.local`)"
 service = "portainer"
 entryPoints = ["websecure"]
 tls = { certResolver = "self-signed" }

 [http.routers.pihole-secure]
 rule = "Host(`pihole.local`)"
 service = "pihole"
 entryPoints = ["websecure"]
 tls = { certResolver = "self-signed" }

 [http.services]
 [http.services.portainer.loadBalancer]
 [[http.services.portainer.loadBalancer.servers]]
 url = "http://portainer:9443"

 [http.services.pihole.loadBalancer]
 [[http.services.pihole.loadBalancer.servers]]
 url = "http://pihole:888"

Here’s the Pi-hole docker-compose.yml adjusted to match the certificate and Traefik settings:

Step 5: Adjust the Pi-hole Docker Compose Configuration

version: '3'

services:
 pihole:
 networks:
 - management_net # For management via Traefik
 image: pihole/pihole:latest
 ports:
 - "53:53/tcp"
 - "53:53/udp"
 - "888:80"
 environment:
 TZ: 'Europe/Zurich'
 WEBPASSWORD: '${PIHOLE_PASSWORD}'
 volumes:
 - '/mnt/glustermount/data/pihole_data/etc:/etc/pihole'
 - '/mnt/glustermount/data/pihole_data/dns:/etc/dnsmasq.d'
 restart: unless-stopped
 deploy:
 mode: replicated
 replicas: 1
 placement:
 constraints: [node.platform.os == linux]
 labels:
 - 'traefik.enable=true'
 - "traefik.http.routers.pihole-secure.rule=Host(`pihole.local`)"
 - "traefik.http.routers.pihole-secure.entrypoints=websecure"
 - "traefik.http.routers.pihole-secure.tls=true"
 - "traefik.http.services.pihole.loadbalancer.server.port=80"

networks:
 management_net:
 external: true

Run the following command to apply the updated stack configuration:
(You can also use Portainer running the Stack)

1. Add the self-signed certificate to your trusted sources on your machine. This can
be done by importing the .crt file into your browser or system's trusted certificates store.

2. Verify the secure connections:
Access https://portainer.local:9443
Access https://pihole.local:888

Both should now use your self-signed certificate with proper encryption.

Step 6: Deploy the Updated Stack

docker stack deploy -c docker-compose.yml your_stack_name

Step 7: Test the Setup

