
Setup Cronjobs for your Swarm Cluster!

Overview

What are Swarm Cronjobs?

Getting Started

Step by Step Setup Guide for Swarm Cronjobs

Usage

Configuration Example 1 (Global Mode)
Configuration Example 2 (Replicated Mode)

Swarm Cronjob

Overview

Overview

What are Swarm Cronjobs?

https://github.com/crazy-max/swarm-cronjob
https://hub.docker.com/r/crazymax/swarm-cronjob/
https://crazymax.dev/swarm-cronjob/

Swarm Cronjob is a tool designed to create and manage time-based scheduled tasks within a
Docker Swarm environment. It operates by dynamically configuring services based on labels and
interacting with the Docker API. This enables the execution of cron-like jobs in a distributed and
failover-capable manner, ensuring high availability and flexibility.

�� Continuously updates its configuration without requiring a restart.
�� Implements cron scheduling using Go routines for efficiency.
⏭ ️ Skips jobs if the associated service is already running, avoiding conflicts.
�� Supports timezone customization for accurate scheduling.
�� Automatic and dynamic configuration via Docker service labels.
⚙️ Distributed job execution across Docker Swarm nodes for failover and scalability.

1. Distributed Scheduling: Swarm Cronjob operates within a Docker Swarm cluster,
allowing jobs to run on any available node, ensuring failover and scalability.

2. Dynamic Configuration: Services are configured automatically and dynamically via
labels, removing the need for manual updates.

3. Flexible Scheduling: With timezone support and Go-based cron implementation,
scheduling is both precise and adaptable.

4. Node Independence: By leveraging GlusterFS for shared storage, Swarm Cronjob
ensures that job scripts like backup processes are not bound to specific nodes, enabling
seamless failover.

Introduction

Features

Key Concepts

Why Use Swarm Cronjob?

Swarm Cronjob is an excellent choice for teams or individuals looking to implement scheduled
tasks in a Docker Swarm environment. It provides high availability by ensuring that tasks can
execute on any node in the cluster, even in the event of node failure. When combined with a
distributed file system like GlusterFS, it eliminates dependency on specific nodes for job execution,
further enhancing reliability and flexibility. This makes it particularly suited for critical tasks like
backups, data processing, and periodic maintenance in highly available environments.

Swarm Cronjob bridges the gap between traditional cron functionality and the dynamic, distributed
nature of Docker Swarm. By automating job scheduling and ensuring failover through its
integration with distributed storage systems, it simplifies task management in containerized
environments. Whether for backups, data synchronization, or other scheduled tasks, Swarm
Cronjob delivers a robust and efficient solution.

Conclusion

Getting Started

Getting Started

Step by Step Setup Guide for
Swarm Cronjobs

https://github.com/crazy-max/swarm-cronjob
https://hub.docker.com/r/crazymax/swarm-cronjob/
https://crazymax.dev/swarm-cronjob/

This wiki article will guide you through the setup of Docker Swarm Cronjobs. Follow the steps below
to deploy and configure cron-like scheduled tasks in your Docker Swarm environment efficiently.

Create a Docker Compose file with the latest image:

Change the TZ environment variable to match your timezone.

Run the stack using one of the following methods:

Introduction

Setup Guide
Step 1: Create a Docker Compose YAML

version: "3.2"

services:
 swarm-cronjob:
 image: crazymax/swarm-cronjob:latest
 volumes:
 - "/var/run/docker.sock:/var/run/docker.sock"
 environment:
 - "TZ=Europe/Paris"
 - "LOG_LEVEL=info"
 - "LOG_JSON=false"
 deploy:
 placement:
 constraints:
 - node.role == manager

Step 2: Deploy the Stack

Command Line: Use the command:

Portainer GUI: Follow the steps in the Portainer Introduction guide to deploy the stack.

If you are interested in configuring a System Prune job, check out the System Prune Configuration.

docker stack deploy -c docker-compose.yaml swarm-cronjob

https://wiki.aeoneros.com/books/portainer/page/introduction-portainer-architecture
https://wiki.aeoneros.com/books/swarm-cronjob/page/configuration-example-1-global-mode

Usage

Usage

Configuration Example 1
(Global Mode)

https://github.com/crazy-max/swarm-cronjob
https://hub.docker.com/r/crazymax/swarm-cronjob/
https://crazymax.dev/swarm-cronjob/

This guide will help you set up a global Docker system prune task using Swarm Cronjob. This task
will run on every node in your Docker Swarm cluster to remove unused data daily at 01:00 AM.

Create a Docker Compose file to define the system prune task. (You could also use the same
Docker-Compose.yaml as in the BaseInstance)

Explanation of Configuration:

mode: global : Ensures the task runs on every node in the cluster.
swarm.cronjob.schedule=0 0 1 * * * : Schedules the task to run daily at 01:00 AM.
swarm.cronjob.skip-running=false : Prevents skipping the task if it is already running.
restart_policy.condition=none : Ensures the task does not restart automatically after
completion.

Before starting, you must have a swarm-cronjob instance up and running using docker.

Docker System Prune - Global Mode

Step 1: Create a Docker Compose YAML

version: "3.2"

services:
 prune-nodes:
 image: docker
 command: ["docker", "system", "prune", "-f"]
 volumes:
 - "/var/run/docker.sock:/var/run/docker.sock"
 deploy:
 mode: global
 labels:
 - "swarm.cronjob.enable=true"
 - "swarm.cronjob.schedule=0 0 1 * * *"
 - "swarm.cronjob.skip-running=false"
 restart_policy:
 condition: none

Add Docker labels to tell swarm-cronjob that your service is a cronjob.

https://wiki.aeoneros.com/books/swarm-cronjob/page/step-by-step-setup-guide-for-swarm-cronjobs
https://crazymax.dev/swarm-cronjob/usage/docker-labels/

Deploy the global stack to your Docker Swarm cluster:

Once deployed, the Docker system prune task will execute on every node in the swarm at the
scheduled time.

Step 2: Deploy the Stack

docker stack deploy -c prune-nodes.yml prune-nodes

Usage

Configuration Example 2
(Replicated Mode)

https://github.com/crazy-max/swarm-cronjob
https://hub.docker.com/r/crazymax/swarm-cronjob/
https://crazymax.dev/swarm-cronjob/

This guide demonstrates how to set up a cronjob using Swarm Cronjob. The example focuses on
running a task periodically based on a defined schedule.

Swarm Cronjob instance is already up and running.

Create a Docker Compose file to define the cronjob:

Deploy the stack to your Docker Swarm cluster:

command : Runs the task defined by the command field (in this case, the date command).
mode: replicated : Ensures the task runs only when scheduled.

Running a Custom Cronjob with Swarm
Cronjob

Prerequisites

Step 1: Create a Docker Compose YAML

version: "3.2"

services:
 test:
 image: busybox
 command: date
 deploy:
 mode: replicated
 replicas: 0
 labels:
 - "swarm.cronjob.enable=true"
 - "swarm.cronjob.schedule=* * * * *"
 - "swarm.cronjob.skip-running=false"
 restart_policy:
 condition: none

Step 2: Deploy the Stack

docker stack deploy -c test.yml test

Explanation of Configuration

replicas: 0 : Prevents the task from running immediately upon deployment.
swarm.cronjob.schedule=* * * * * : Schedules the task to run every minute.
restart_policy.condition=none : Ensures the task does not restart automatically after
completion.

Check the logs to verify task execution:

Example Logs:

Once deployed, the cronjob will execute the defined task at the specified schedule.

Logs

docker service logs swarm_cronjob_app

swarm_cronjob_app.1.nvsjbhdhiagl@default | Thu, 13 Dec 2018 20:04:37 UTC INF Starting swarm-cronjob
v1.2.0
swarm_cronjob_app.1.nvsjbhdhiagl@default | Thu, 13 Dec 2018 20:04:37 UTC INF Add cronjob with schedule *
* * * * service=test
swarm_cronjob_app.1.nvsjbhdhiagl@default | Thu, 13 Dec 2018 20:05:00 UTC INF Start job last_status=n/a
service=test
swarm_cronjob_app.1.nvsjbhdhiagl@default | Thu, 13 Dec 2018 20:06:00 UTC INF Start job last_status=n/a
service=test
swarm_cronjob_app.1.nvsjbhdhiagl@default | Thu, 13 Dec 2018 20:07:00 UTC INF Start job last_status=n/a
service=test
swarm_cronjob_app.1.nvsjbhdhiagl@default | Thu, 13 Dec 2018 20:08:00 UTC INF Start job last_status=n/a
service=test

