
Paperless NGX is an open-source document management solution that allows you to digitize and
efficiently manage your paperwork. In this guide, we will deploy Paperless NGX on a Docker Swarm
cluster using a shared storage volume provided by GlusterFS (or a similar NAS-mounted setup) to
ensure all nodes share the same data. If you intend to expose Paperless NGX to the internet, you
can use Traefik as a reverse proxy for SSL termination.

Docker Swarm
GlusterFS (or a similar NAS mount) so that all nodes have access to the same directories
(Optional) Traefik, if you plan to make Paperless NGX accessible externally (recommended
for TLS/SSL)

Quick Paperless Stack Setup
Guide

Prerequisites

Step 1: Set Up Directory Structure

https://wiki.aeoneros.com/books/docker-guide/chapter/swarm-mode
https://wiki.aeoneros.com/books/glusterfs-keepalived-setup/chapter/glusterfs
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm
https://github.com/paperless-ngx/paperless-ngx
https://hub.docker.com/r/paperlessngx/paperless-ngx
https://docs.paperless-ngx.com/

Create the directories for Paperless NGX data, ensuring they reside on your GlusterFS (or
equivalent) mount so that data is shared among all Swarm nodes. For example:

Below is an example docker-compose.yml that sets up Paperless NGX alongside Redis, PostgreSQL,
Gotenberg, and Apache Tika. This file is intended for Docker Swarm with a GlusterFS-backed
volume. You can adapt paths and replicas to your needs.

mkdir -p /mnt/glustermount/data/paperless/
mkdir -p /mnt/glustermount/data/paperless/redisdata
mkdir -p /mnt/glustermount/data/paperless/data
mkdir -p /mnt/glustermount/data/paperless/media
mkdir -p /mnt/glustermount/data/paperless/export
mkdir -p /mnt/glustermount/data/paperless/consume
mkdir -p /mnt/glustermount/data/paperless/postgresqldata

Step 2: Create Your Docker Compose File
Important: In all configurations and code snippets below, replace YOUR-DOMAIN.com with
your actual domain wherever applicable.

version: "3.7"

services:
 broker:
 image: docker.io/library/redis:7
 restart: unless-stopped
 volumes:
 - /mnt/glustermount/data/paperless/redisdata:/data
 deploy:
 mode: replicated
 replicas: 1
 networks:
 - internal

 webserver:
 image: ghcr.io/paperless-ngx/paperless-ngx:latest
 restart: unless-stopped
 depends_on:
 - broker

 - gotenberg
 - tika
 ports:
 - "8000:8000"
 volumes:
 - /mnt/glustermount/data/paperless/data:/usr/src/paperless/data
 - /mnt/glustermount/data/paperless/media:/usr/src/paperless/media
 - /mnt/glustermount/data/paperless/export:/usr/src/paperless/export
 - /mnt/glustermount/data/paperless/consume:/usr/src/paperless/consume
 environment:
 PAPERLESS_REDIS: "redis://broker:6379"
 PAPERLESS_TIKA_ENABLED: 1
 PAPERLESS_TIKA_GOTENBERG_ENDPOINT: "http://gotenberg:3000"
 PAPERLESS_TIKA_ENDPOINT: "http://tika:9998"
 PAPERLESS_URL: "https://paperless.YOUR-DOMAIN.com"
 PAPERLESS_OCR_LANGUAGE: "eng"
 PAPERLESS_TIME_ZONE: "Europe/Zurich"
 PAPERLESS_ADMIN_USER: "${PAPERLESS_ADMIN_USER}"
 PAPERLESS_ADMIN_PASSWORD: "${PAPERLESS_ADMIN_PW}"
 PAPERLESS_ADMIN_MAIL: "${PAPERLESS_ADMIN_EMAIL}"
 PAPERLESS_SECRET_KEY: "${PAPERLESS_SECRET_KEY}"
 PAPERLESS_DBHOST: "db"
 PAPERLESS_DBNAME: "${PAPERLESS_POSTGRES_DB}"
 PAPERLESS_DBUSER: "${PAPERLESS_POSTGRES_USER}"
 PAPERLESS_DBPASS: "${PAPERLESS_POSTGRES_PASSWORD}"
 deploy:
 mode: replicated
 replicas: 1
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.webserver.rule=Host(`paperless.YOUR-DOMAIN.com`)"
 - "traefik.http.routers.webserver.entrypoints=websecure"
 - "traefik.http.services.webserver.loadbalancer.server.port=8000"
 - "traefik.docker.network=management_net"
 networks:
 - management_net
 - internal

 db:
 image: docker.io/library/postgres:16

 restart: unless-stopped
 volumes:
 - /mnt/glustermount/data/paperless/postgresqldata:/var/lib/postgresql/data
 environment:
 POSTGRES_DB: "${PAPERLESS_POSTGRES_DB}"
 POSTGRES_USER: "${PAPERLESS_POSTGRES_USER}"
 POSTGRES_PASSWORD: "${PAPERLESS_POSTGRES_PASSWORD}"
 deploy:
 mode: replicated
 replicas: 1
 networks:
 - internal

 gotenberg:
 image: docker.io/gotenberg/gotenberg:8.7
 restart: unless-stopped
 command:
 - "gotenberg"
 - "--chromium-disable-javascript=true"
 - "--chromium-allow-list=file:///tmp/.*"
 deploy:
 mode: replicated
 replicas: 1
 networks:
 - internal

 tika:
 image: docker.io/apache/tika:latest
 restart: unless-stopped
 deploy:
 mode: replicated
 replicas: 1
 networks:
 - internal

networks:
 management_net:
 external: true

 internal:

The internal network is an overlay network dedicated to internal communication between Paperless
NGX services (like Redis, Gotenberg, Tika, and PostgreSQL). By assigning a specific subnet (
172.16.58.0/24), you ensure:

Isolation: Only these containers communicate on this internal overlay, reducing exposure
to the outside world.
Predictability: Having a known subnet range helps avoid IP conflicts with other
networks.

If you are using Portainer, you can define environment variables such as stack.env directly in the
Portainer Web-GUI when deploying the stack.

If you are not using Portainer, create a .env file in the same directory as your docker-compose.yml
and specify:

Then add the following variables in your .env file:

 driver: overlay
 ipam:
 config:
 - subnet: 172.16.58.0/24

Why We Define a Custom Subnet for the internal Network

Defining Environment Variables

services:
 webserver:
 ...
 env_file:
 - .env

 db:
 ...
 env_file:
 - .env

You can also check out the official sample environment file for Paperless NGX to see additional
variables you may configure.

Below is a brief explanation of some key environment variables in the docker-compose.yml file. For a
full list of available variables and their usage, refer to the Paperless NGX Configuration
Documentation.

PAPERLESS_URL: The base URL where Paperless NGX is accessible (e.g.,
https://paperless.your-domain.com).
PAPERLESS_REDIS: The Redis connection string (host:port) for caching and background
tasks.
PAPERLESS_TIKA_ENABLED: Enables Apache Tika integration for advanced document
parsing.
PAPERLESS_TIKA_GOTENBERG_ENDPOINT / PAPERLESS_TIKA_ENDPOINT:
Endpoints for Gotenberg and Tika services, respectively, used to convert and parse
documents.
PAPERLESS_TIME_ZONE: Sets the timezone inside the container (e.g., Europe/Zurich).
PAPERLESS_ADMIN_USER / PAPERLESS_ADMIN_PASSWORD /
PAPERLESS_ADMIN_MAIL: Credentials for the default Paperless NGX admin account.
PAPERLESS_SECRET_KEY: A secret key used by the Django framework within Paperless
NGX for cryptographic functions.
PAPERLESS_DBHOST / PAPERLESS_DBNAME / PAPERLESS_DBUSER /
PAPERLESS_DBPASS: Connection details for PostgreSQL. These point to the db service
and use the credentials defined in the environment variables.

PAPERLESS_POSTGRES_DB=
PAPERLESS_POSTGRES_USER=
PAPERLESS_POSTGRES_PASSWORD=
PAPERLESS_ADMIN_USER=
PAPERLESS_ADMIN_PW=
PAPERLESS_ADMIN_EMAIL=
PAPERLESS_SECRET_KEY=

Environment Variables Used in the Compose File

Step 3: Deploy the Stack

https://github.com/paperless-ngx/paperless-ngx/blob/main/docker/compose/docker-compose.env
https://docs.paperless-ngx.com/configuration/
https://docs.paperless-ngx.com/configuration/

Navigate to the directory containing your docker-compose.yml file and deploy the stack with Docker
Swarm:

Alternatively, you can deploy the stack via Portainer or any other Docker Swarm management tool.

Once deployed, Paperless NGX will be available at the port you specified (8000 by
default) on the Swarm node.
If you configured Traefik and DNS correctly, you should be able to access your Paperless
NGX instance at https://paperless.your-domain.com .
Log in with the admin credentials you set in the environment variables.

Multi-Node Persistence: Because GlusterFS (or an equivalent) is used, your Paperless
NGX data and database files are stored on shared volumes accessible by all nodes in the
Swarm.
Security & SSL: If you’re exposing Paperless NGX externally, ensure you have valid SSL
certificates set up (e.g., via Traefik with Let’s Encrypt).
Scaling Services: You can increase the replicas value for different services if you want to
distribute the load across multiple nodes.

By deploying Paperless NGX on a Docker Swarm, you gain the benefits of high availability and
scalability, especially when backed by a distributed storage solution like GlusterFS. Whether you
use Portainer for an easier management interface or rely on .env files for more traditional Docker
workflows, the key is consistent environment configuration and ensuring all nodes share the
necessary data volumes. With this setup, your document management solution is primed for
production use—secure, resilient, and easy to extend.

docker stack deploy -c docker-compose.yml paperless

Step 4: Accessing Paperless NGX

Additional Notes

Conclusion

Revision #7
Created 4 April 2025 11:46:08 by aeoneros

Updated 8 April 2025 05:51:33 by aeoneros

