
Keep your Docker Swarm Files synced in Realtime.

GlusterFS

What is GlusterFS?
Step-by-Step Guide: Setup GlusterFS
Step-by-Step Guide: How to Mount GlusterFS on Boot

Keepalived

What is Keepalived?
Step-by-Step Guide: Setup Keepalived

GlusterFS &
Keepalived Setup

GlusterFS

GlusterFS

GlusterFS is an open-source distributed file system that allows you to pool storage resources from
multiple servers (nodes) into a single file system. It's designed to handle large amounts of data by
distributing it across many machines, making it scalable and fault-tolerant. Essentially, GlusterFS
lets you combine the storage capacity of several machines into a shared system that all machines
can access.

GlusterFS is managed by the glusterd service, which is the core of the system. It keeps track of
which files are stored on which machines and ensures that data is replicated across different
nodes. This replication is useful because it allows your data to survive even if one of your nodes
fails, ensuring high availability.

When running services in Docker Swarm's replicated mode, the same service runs on multiple
nodes to ensure high availability and scalability. These nodes may need to access the same set of
data files, and that's where GlusterFS becomes very useful. Instead of storing separate copies of
files on each node (which could lead to inconsistencies), GlusterFS ensures that all nodes share the
same file system and stay in sync.

Using GlusterFS on the host system (rather than inside Docker) ensures that the file syncing works
across the entire system, regardless of Docker's configuration. This setup is independent of the
containers, allowing for seamless file sharing even if containers are recreated or moved to different
nodes. Additionally, since GlusterFS operates at the system level, it can sync files across nodes
more efficiently, avoiding network bottlenecks inside Docker containers.

Setting up GlusterFS across the nodes ensures that any file written on one node is immediately
available to the others, providing data consistency and reliability when scaling services across a
Docker Swarm cluster.

What is GlusterFS?
GlusterFS Basic Explanation

Why Use GlusterFS for Syncing Docker
Swarm Nodes?

GlusterFS

This guide will walk you through setting up GlusterFS on a 3-node cluster using Raspberry Pis, with
the IP addresses: 192.168.0.10 , 192.168.0.11 , and 192.168.0.12 . GlusterFS will be used to create a
distributed, replicated file system across these nodes. Follow these steps to get your cluster up and
running.

First, you need to install the required packages on all nodes. The software-properties-common
package allows managing repositories, and glusterfs-server installs the GlusterFS server.

To ensure GlusterFS starts automatically after each reboot, you need to enable the glusterd service
(GlusterFS daemon) on all nodes. Run this command on each node:

Step-by-Step Guide: Setup
GlusterFS

If you dont know what GlusterFS is what what its for, you may consider check out this Post.

Step-by-Step Guide to Setting Up GlusterFS on a 3-Node
Cluster

Step 1: Install GlusterFS on All Nodes

sudo apt install software-properties-common glusterfs-server -y

This ensures that every node in your cluster has GlusterFS installed and ready to share and
replicate files.

Step 2: Enable Automatic Start of GlusterFS on Reboot

sudo systemctl start glusterd && sudo systemctl enable glusterd

https://wiki.aeoneros.com/books/glusterfs-keepalived-setup/page/what-is-glusterfs

Now, log in to the main node (192.168.0.10) via SSH as root. You need to "peer probe" the other
nodes to add them to the GlusterFS cluster. The peer probe is a command that connects the other
nodes to the Gluster network, allowing them to participate in the distributed file system.
On the main node (192.168.0.10), run the following commands:

A volume in GlusterFS is essentially a storage pool made up of directories on different nodes. Here,
we’ll create a replicated volume across all three nodes. Replication ensures that the same data is
stored on all nodes, making it resilient to failures.
Run the following command on the main node (192.168.0.10):

Explanation:

[glustername] is the name you want to give to your GlusterFS volume.
replica 3 specifies that this is a replicated volume across all 3 nodes.
The paths after each node's IP specify where the volume will be stored on each node (
/root/gluster).

The force option is used to bypass potential warnings (such as creating volumes in a root
directory).

This command starts the Gluster service immediately and ensures it starts automatically on
system reboot.

Step 3: Peer Probe the Nodes

gluster peer probe 192.168.0.11
gluster peer probe 192.168.0.12

The peer probe command tells the main node to reach out to the other nodes, establishing a
connection and syncing them into the cluster.

Step 4: Create the GlusterFS Volume

gluster volume create [glustername] replica 3 192.168.0.10:/root/gluster 192.168.0.11:/root/gluster
192.168.0.12:/root/gluster force

Step 5: Start the GlusterFS Volume

Once the volume is created, you need to start it. This also needs to be done on the main node:

On each node, create a directory where you will mount the GlusterFS volume. For this guide, we'll
use /mnt/glustermount as the mount point.
Run this command on all nodes:

This ensures that the GlusterFS volume has a place to be mounted on each node.

Now, mount the GlusterFS volume on the /mnt/glustermount folder. Run this command on each
node:

gluster volume start [glustername]

Replace [glustername] with the name of the volume you created in the previous step.

Step 6: Create a Mount Directory on Each Node

sudo mkdir -p /mnt/glustermount

Step 6.1: Mount the GlusterFS Volume

sudo mount.glusterfs localhost:/[glustername] /mnt/glustermount

Replace [glustername] with the name of your volume. This mounts the volume, making it
accessible from the /mnt/glustermount directory on each node.

To Setup Automatic Mount of GlusterFS on Boot check out this Post,

Your 3-node GlusterFS cluster should now be up and running, providing a replicated and
distributed file system that’s resilient and ready for use!

https://wiki.aeoneros.com/books/glusterfs-keepalived-setup/page/step-by-step-guide-how-to-mount-glusterfs-on-boot

GlusterFS

To ensure that your GlusterFS volume is automatically mounted at boot, you’ll need to make some
adjustments. By default, GlusterFS volumes might not mount properly on startup due to timing
issues, where the Gluster service (glusterd) hasn’t fully started yet. The following steps provide a
workaround that ensures your GlusterFS volume is mounted after boot.

First, you need to add a script that ensures the GlusterFS service has fully started before the
system attempts to mount the volume.

Run the following command to edit the glusterd.service :

This will open a text editor. Add the following configuration to ensure a delay in mounting the
GlusterFS volume:

Save and exit the editor.

Step-by-Step Guide: How to
Mount GlusterFS on Boot

This guide is based on insights from this ServerFault discussion, modified to suit your 3-node
Raspberry Pi setup.

Step 1: Modify the GlusterFS Service to Wait Before
Mounting

sudo systemctl edit glusterd.service

[Service]
ExecStartPost=/usr/local/sbin/glusterfs-wait

Step 2: Create the glusterfs-wait Script

https://serverfault.com/questions/800494/glusterfs-mount-on-boot-on-clustered-servers-rhel-7

Next, create a script that checks if the GlusterFS volume is ready to be mounted. This script will be
called after the Gluster service starts and will retry the mount command until it succeeds.

Create the script file:

Paste the following content into the file:

Save and close the file.

You need to make the script executable so it can run at startup.

Run this command:

To ensure that the GlusterFS mount happens after the glusterd.service is up and running, you need
to create a mount override.

For the example folder /mnt/glustermount , run the following command:

sudo nano /usr/local/sbin/glusterfs-wait

#!/bin/bash
FAIL=1
until [$FAIL -eq 0]; do
 gluster volume status all
 FAIL=$?
 test $FAIL -ne 0 && sleep 1
done
exit 0

This script will keep checking the status of the GlusterFS volume every second until the
volume is ready.

Step 3: Make the Script Executable

sudo chmod +x /usr/local/sbin/glusterfs-wait

Step 4: Create a Mount Override

sudo systemctl edit mnt-glustermount.mount

In the text editor, paste the following content:

This ensures that the mount service will wait for the glusterd service to start.
Save and close the editor.

To apply the changes, reload the systemd daemon with the following command:

Then, reboot your system:

After the system reboots, check the status of the GlusterFS service and ensure the volume is
mounted correctly:

You should see that the GlusterFS volume has mounted successfully, and the service is running
without issues.

[Unit]
After=glusterd.service
Wants=glusterd.service

Step 5: Reload the Systemd Daemon and Reboot

sudo systemctl daemon-reload

sudo reboot

Step 6: Verify GlusterFS Mount After Reboot

systemctl status glusterd.service

This setup ensures that your GlusterFS volumes are reliably mounted after each system
boot.

Keepalived

Keepalived

Keepalived is an open-source service commonly used to ensure high availability for network
services. It helps by monitoring the health of services and automatically switching over to a backup
server if the primary server goes down. This process is known as failover. Keepalived works by
using a protocol called VRRP (Virtual Router Redundancy Protocol) to create a virtual IP address
that is shared between multiple servers. The virtual IP always points to the currently active
(healthy) server, ensuring that users can access services without interruption, even if one server
fails.

Keepalived constantly monitors the health of the primary server. If a failure is detected, it assigns
the virtual IP address to a backup server, which takes over, keeping the service running smoothly.

In a Docker Swarm environment, you may want to ensure that your services are highly available
even if a node goes down. This is where Keepalived becomes useful. By using Keepalived, you can
provide a single, consistent virtual IP address that always points to the active node in your cluster.
This means that users or external services only need to connect to one IP address, and they will
always be directed to a healthy node.

When used on the host system rather than inside Docker, Keepalived can manage failovers at the
network level. This ensures that the Docker Swarm services running in replicated mode remain
accessible through a single virtual IP, even if the node hosting the service fails. It provides
seamless failover without relying on Docker’s internal mechanisms, giving more flexibility and
reliability in how the swarm nodes are managed.

By using Keepalived, you make sure that the services running on Docker Swarm remain accessible
at all times, providing an extra layer of high availability on top of the replication and scaling
features of Docker Swarm.

What is Keepalived?
Keepalived Basic Explanation

Why Use Keepalived for Syncing Docker
Swarm Nodes?

In a 3-node Docker Swarm setup, you have three Raspberry Pis (or servers) working together to run
your services. Docker Swarm distributes your services across the nodes for high availability and
load balancing.

By adding Keepalived to this setup, you can ensure that the cluster is always accessible through a
single virtual IP (VIP). In this example, the VIP is 192.168.0.200 . Keepalived monitors the health of
the nodes, and if the active node fails, it automatically assigns the VIP to another healthy node.

So, any traffic to 192.168.0.200 is always directed to an available node, ensuring uninterrupted
service even if one node goes down.

Simple Explanation of a 3-Node Docker
Swarm with Keepalived

Keepalived

Keepalived is an open-source tool used to ensure high availability and redundancy for services. It
does this by monitoring the health of your network and services and automatically switching to a
backup server if the primary one fails. In this setup, we are using a custom Keepalived Docker
image built specifically for Raspberry Pi (ARMv8) by Takabu, a friend of mine. This allows us to
implement Keepalived in a Docker Swarm environment on Raspberry Pis.

Keepalived assigns a priority to each node. The node with the highest priority becomes the
primary holder of the VIP. If that node goes down, the node with the next highest priority takes
over the VIP. This ensures that the VIP is always assigned to a functioning node.

Here’s how the priority system works in our Docker Swarm:

Step-by-Step Guide: Setup
Keepalived

Keepalived on Docker Swarm
A Custom Raspberry Pi Setup

In our Docker Swarm setup, Keepalived is used to provide a Virtual IP (VIP) that will always
point to a healthy node, ensuring seamless failover if a node goes offline.

Priority List and How it Works

https://hub.docker.com/layers/takabu/public/docker-swarm-keepalived/images/sha256-89a270f3e0d6153546df32cf1518ec4d36d3a4d308d467209f97ce170f31251e?context=explore
https://github.com/Takabuu/docker-swarm-keepalived
https://wiki.aeoneros.com/link/32#bkmrk-priority-list-and-ho

Swarm1 (192.168.0.10): Priority 100 (lowest priority)
Swarm2 (192.168.0.11): Priority 101
Swarm3 (192.168.0.12): Priority 102 (highest priority)

The node with priority 102 (Swarm3) will be the primary node, and if it goes down, the VIP will
switch to the node with priority 101 (Swarm2), and so on.

Before deploying Keepalived, you need to set the priority for each node. Use the following
commands to label each node with its priority:

Setting Up the Priority List

docker node ls # List all nodes in the swarm

Assign priority labels to each node:
docker node update Swarm1 --label-add KEEPALIVED_PRIORITY=100
docker node update Swarm2 --label-add KEEPALIVED_PRIORITY=101
docker node update Swarm3 --label-add KEEPALIVED_PRIORITY=102

With the priorities set, Keepalived will ensure that the node with the highest priority is
always assigned the VIP. If that node fails, Keepalived automatically shifts the VIP to the
next highest-priority node, maintaining service availability.

Docker Compose File for Keepalived
version: '3.8'

services:
 keepalived:
 image: takabu/public:docker-swarm-keepalived # Custom Keepalived image for Raspberry Pi (ARMv8)
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock # Mount Docker socket to interact with Docker API and control
the nodes

https://wiki.aeoneros.com/link/32#bkmrk-setting-up-the-prior
https://wiki.aeoneros.com/link/32#bkmrk-docker-compose-file-

Explanation of Key Sections:

/var/run/docker.sock:/var/run/docker.sock : This mounts the Docker socket into the
Keepalived container, allowing Keepalived to communicate with Docker and control the
failover between nodes based on the priority list.
KEEPALIVED_VIRTUAL_IPS: "192.168.0.200" : This environment variable specifies the VIP (
192.168.0.200) that Keepalived will manage. This IP will always point to the highest-
priority, healthy node.

 networks:
 - host # Use the host network for direct access to networking features
 deploy:
 mode: global # Ensures Keepalived runs on all manager nodes
 placement:
 constraints: [node.role == manager] # Limit deployment to Swarm manager nodes only
 environment:
 KEEPALIVED_VIRTUAL_IPS: "192.168.0.200" # Virtual IP (VIP) for Keepalived to manage and switch between
nodes

networks:
 host:
 external: true
 name: host # Leverage the host network to manage VIP switching and network traffic directly

