
Docker Engine is the heart of Docker, a technology that allows you to create and run small,
lightweight packages called containers. These containers are like tiny virtual machines but much
more efficient. They contain everything an application needs to run, including the code, system
libraries, and settings, so it behaves the same on any computer.

https://www.youtube.com/embed/rIrNIzy6U_g

Docker Daemon: This is the background service that handles container management on
a Docker host. It listens for Docker API requests and manages the lifecycle of Docker
containers, including starting, stopping, and monitoring.
REST API: This API allows external tools and programs to communicate with the Docker
Daemon, making it possible to manage Docker resources programmatically.
Docker CLI: The Command-Line Interface (CLI) provides users with the ability to interact
with the Docker Daemon using commands. It allows for creating and managing
containers, images, networks, and volumes from the terminal.

Docker Engine can run on any Linux-based operating system, including distributions like Debian,
Ubuntu, and CentOS, as well as other systems like Windows and macOS using platform-specific
adaptations. On Linux systems, Docker containers share the host's kernel, making them lightweight
and highly efficient.

What is Dockerengine?

Overview

Docker 101

Docker Engine consists of the following major components:

https://www.youtube.com/embed/rIrNIzy6U_g
https://docs.docker.com/engine/


At its core, Docker Engine uses a client-server model. You, the user, interact with Docker by
typing commands (using the CLI) or through other software (via the REST API). The Docker
Daemon (the server part) listens to these requests and manages all the containers on your
system.

Images and Containers: Containers are created from something called images. Think
of an image as a template or blueprint for a container. When you run an image, it
becomes a container that can actually perform tasks.
Layers and File System: Docker Engine makes things more efficient by building
containers in layers, where each layer represents a change or addition to the image. This
way, Docker doesn’t need to rebuild everything from scratch each time you make
changes.
Isolation and Resources: Docker Engine uses special features in the Linux kernel (the
core of the operating system) to isolate containers from each other, ensuring that one
container’s actions don’t affect another. It also controls how much CPU, memory, and
other resources each container can use.

Lightweight: Containers don’t need their own operating system; they use the host
system’s resources. This makes them much smaller and faster than virtual machines.
Portability: Once you create a container, it will run the same way on any system that has
Docker, no matter where it is. This makes it easy to move your application from your
computer to a cloud server or any other environment.
Fast: Containers start up almost instantly because they don’t have to load a whole
operating system. This makes them ideal for quick testing and development.
Isolation: Each container has its own environment, meaning that your application and its
dependencies won’t interfere with other applications on the same system.

Networking: Docker Engine allows containers to communicate with each other and the
outside world through networks. You can connect containers together or expose them to
the internet easily.
Storage: Docker Engine can manage data that needs to persist even when containers are
restarted or deleted. It does this using volumes (for storing data outside of containers) or
bind mounts (which link folders on the host system to containers).

How Does Docker Engine Work?

Key Features of Docker Engine

More Capabilities of Docker Engine



Orchestration Support: For larger applications, Docker Engine works well with tools like
Docker Swarm and Kubernetes. These tools help manage and automate the running of
many containers at once, often across multiple servers.

Interested on More?
Check Out "Docker Vs VM's"

Revision #6
Created 11 September 2024 09:24:23 by aeoneros
Updated 8 October 2024 21:59:30 by aeoneros

https://wiki.aeoneros.com/books/docker-guide/page/docker-vs-vm

