
Docker Swarm Mode introduces the concept of a routing

mesh, a powerful feature that simplifies the process of exposing services to external clients in a
swarm cluster. This tutorial provides an overview of how the ingress network and routing mesh
work, how to publish ports for services, and how to configure an external load balancer like
HAProxy to interact with a Swarm service.

The routing mesh in Docker Swarm Mode allows all nodes in the swarm to accept connections to
a published service port, even if the service isn't running on that particular node. The routing mesh
automatically routes incoming requests to a node where an instance of the service is active,
ensuring the requests are handled efficiently and transparently.

The ingress network is a special network created by Docker for the purpose of handling the
routing mesh. All Swarm services are connected to the ingress network, allowing them to
communicate and route requests to the correct node.

Before you enable Swarm Mode and use the ingress network, make sure the following ports are
open between the swarm nodes:

Understanding Docker
Swarm Mode Routing Mesh

What is the Routing Mesh?

Ingress Network

Key Ports to Open

https://docs.docker.com/engine/swarm/ingress/

Port 7946 (TCP/UDP): For container network discovery.
Port 4789 (UDP): For the container ingress network (VXLAN).

When you publish a service in Docker Swarm, each node in the swarm can receive traffic for that
service, regardless of whether the service is running on that node or not. The swarm manager's
routing mesh ensures that requests are forwarded to the appropriate node where the service is
active.

You have three nodes in your swarm:

node1 with IP 192.168.99.100
node2 with IP 192.168.99.101
node3 with IP 192.168.99.102

You deploy a service called my-web using the Nginx container. Even if the Nginx container is only
running on node1 and node2 , you can send a request to node3 , and Docker will route that request
to one of the active containers running on node1 or node2 .

Here’s an example of the command to create the service with two replicas:

In this case, the Nginx service is available on port 8080 on all swarm nodes.

How the Routing Mesh Works

Example:

docker service create \
 --name my-web \
 --publish published=8080,target=80 \
 --replicas 2 \
 nginx

To expose a service to the outside world, you use the --publish flag when creating the service. This
flag lets you map a port on the node (published port) to a port inside the container (target port).

For example:

This command publishes port 8080 on the swarm nodes and maps it to port 80 inside the Nginx
container.

published: The port that the swarm makes available outside the container.
target: The port that the container listens on (inside the container).

In the diagram above, you can see that requests sent to any node on port 8080 are routed
to the appropriate Nginx instance.

Publishing a Port for a Service

docker service create \
 --name my-web \
 --publish published=8080,target=80 \
 nginx

https://wiki.aeoneros.com/uploads/images/gallery/2024-09/P7k7ch6pnNMLF156-ingress-routing-mesh.webp

You can use docker service inspect to view detailed information about a service, including which ports
have been published.

For example, to inspect the my-web service:

The output will show the TargetPort (the container’s internal port) and the PublishedPort (the port on
the swarm nodes):

In a real-world production scenario, you may want to use an external load balancer such as
HAProxy to handle traffic across multiple swarm nodes. The load balancer can distribute incoming
traffic to the nodes in the swarm, which will then use the routing mesh to route the traffic to the
correct container.

The following HAProxy configuration listens on port 80 and forwards requests to the my-web
service running on port 8080 on the swarm nodes:

Viewing Published Ports with docker service
inspect

docker service inspect --format="{{json .Endpoint.Spec.Ports}}" my-web

[{"Protocol":"tcp","TargetPort":80,"PublishedPort":8080}]

Configuring an External Load Balancer
with the Routing Mesh

Example HAProxy Configuration

global
 log /dev/log local0
 log /dev/log local1 notice

frontend http_front

 bind *:80
 stats uri /haproxy?stats
 default_backend http_back

backend http_back
 balance roundrobin
 server node1 192.168.99.100:8080 check
 server node2 192.168.99.101:8080 check
 server node3 192.168.99.102:8080 check

This configuration ensures that incoming traffic on port 80 is distributed across the nodes (
node1 , node2 , and node3) on port 8080 .

In the above diagram, the HAProxy load balancer distributes requests across all nodes in the
swarm, and the swarm routing mesh ensures that traffic is forwarded to an active container.

https://wiki.aeoneros.com/uploads/images/gallery/2024-09/NOerLxhqe3RVi2BZ-ingress-lb.webp

In some cases, you may want to bypass the routing mesh so that requests are sent directly to the
node that is running the service. This is useful when you want to ensure that only nodes running
the service are accessible on the published port. This mode is referred to as host mode.

To bypass the routing mesh, use the --publish flag with the mode=host option:

If you want to bypass the routing mesh entirely, you can configure an external load balancer to
handle traffic without relying on the Swarm's built-in load balancing.

Use --endpoint-mode dnsrr to configure Docker to return a list of IP addresses for the nodes running
the service when queried, rather than a virtual IP. This allows your external load balancer to
directly handle traffic distribution based on DNS entries.

Example:

Bypassing the Routing Mesh (Host Mode)

docker service create --name dns-cache \
 --publish published=53,target=53,protocol=udp,mode=host \
 --mode global \
 dns-cache

In host mode, traffic sent to a node will only be handled if that node is running the service
task. Otherwise, the connection will fail.

Using an External Load Balancer Without
the Routing Mesh

docker service create \
 --name my-web \
 --publish published=8080,target=80 \
 --endpoint-mode dnsrr \
 nginx

Docker Swarm Mode's routing mesh and ingress network provide powerful and flexible ways to
expose services to external clients. By using the routing mesh, all swarm nodes can participate in
traffic routing, providing high availability and fault tolerance. For more control, you can configure
external load balancers like HAProxy or bypass the routing mesh entirely to meet specific needs.

Whether you are using the default routing mesh or integrating with an external load balancer,
Docker Swarm Mode simplifies the process of deploying and scaling services across distributed
systems.

In this mode, the load balancer directly routes traffic to nodes running the service, without
going through the swarm routing mesh.

Conclusion

Revision #1
Created 11 September 2024 14:32:42 by aeoneros
Updated 11 September 2024 14:39:56 by aeoneros

