
Docker Swarm Mode is a feature within Docker that allows you to

manage a cluster of Docker nodes (computers running Docker) as if they were a single machine.
This is extremely useful for deploying applications that require multiple containers distributed
across various servers. It provides built-in tools for clustering, service orchestration, load balancing,
and scaling without needing extra software.

In simple terms, Swarm Mode turns a collection of computers running Docker into a "swarm,"
allowing you to manage services across these machines as though they were one system.

When you deploy an application to a swarm, here’s what happens:

Swarm mode Overview &
Key Concepts

How Docker Swarm Mode Works

https://docs.docker.com/engine/swarm/
https://wiki.aeoneros.com/uploads/images/gallery/2024-09/3zh7ZTM0tufMvk6C-logo-1.png


1. You define a service (e.g., a web server) that should run in the swarm.
2. You tell Docker how many replicas (copies) of this service you want running at all times.
3. Docker ensures that these replicas are distributed across the available nodes.
4. If one node fails or a container crashes, Docker automatically adjusts to maintain the

desired state.

A node is any machine that is part of a Docker Swarm cluster. Nodes can either be manager
nodes (which control the swarm) or worker nodes (which run containers). In a real-world
production environment, nodes are often spread across multiple physical servers or cloud
machines.

Manager Node: Manages the cluster by keeping track of tasks and assigning them to
workers. The manager also ensures that the desired number of containers are always
running.
Worker Node: Receives and executes tasks given by the manager. Workers run the
containers but do not manage the swarm.

A service is a definition of what needs to be run in the swarm. When you create a service,
you specify things like the container image to use and how many copies (replicas) of the
service should run.
There are two types of services:

Replicated Services: The swarm manager assigns a set number of replica tasks to
run across the available nodes.
Global Services: A task for this service runs on every node in the swarm.

A task is a unit of work, which includes running a Docker container. Each task is
scheduled by the swarm manager to be executed on one of the worker nodes. Once a task
is assigned to a node, it remains on that node until it completes or fails.

Here’s an example: Let’s say you want to run a web application in a swarm with 5 replicas of
a web server. Docker will create 5 containers and distribute them across the nodes in the
swarm. If one node fails, Docker will automatically start new containers on other nodes to
keep 5 web servers running.

 

Key Concepts in Docker Swarm Mode
1. Nodes

2. Services and Tasks

3. Load Balancing



Docker Swarm has built-in load balancing to distribute traffic between the different containers
running on the swarm. When external users access a service, the traffic is routed to any node in
the swarm, and that node forwards the request to the appropriate container running the service.
Swarm uses ingress load balancing for external traffic and internal DNS-based load
balancing for traffic within the swarm.

One of the most important features of Docker Swarm is its ability to maintain the desired state.
The manager nodes constantly monitor the swarm and automatically adjust the number of
containers to match what you have defined. For example, if one of the worker nodes fails, the
manager will ensure that new containers are created on other nodes to maintain the required
number of replicas.

Cluster Management: Swarm Mode provides built-in tools for managing a cluster of
Docker nodes without needing additional software.
Declarative Service Model: You define what you want your application to look like
(number of containers, network, resources) and Docker ensures it matches your
specification.
Automatic Scaling: You can increase or decrease the number of service replicas at any
time, and Docker will automatically adjust the cluster to match.
Rolling Updates: When you update your application, Docker can gradually roll out the
update to your nodes. If something goes wrong, you can roll back to a previous version of
the service.
Multi-Host Networking: Docker allows services to communicate across different nodes
using an overlay network. This simplifies networking across nodes in different locations.
Service Discovery: Docker Swarm automatically assigns each service a DNS name, so
containers can find and communicate with each other easily.
Security: Docker Swarm Mode is secure by default. All communications between nodes in
the swarm are encrypted using TLS, and each node must authenticate itself to the others.

When running Docker in Swarm Mode, you can still use standalone containers alongside your
swarm services. However, there are key differences between the two:

Swarm Services: These are managed by the swarm manager and offer advanced
features like scaling, load balancing, and automatic updates.
Standalone Containers: These are not part of the swarm, and you manage them
manually, just like regular Docker containers.

4. Desired State Reconciliation

Docker Swarm Mode Features

Swarm Mode vs. Standalone Containers



Production Environments: Swarm Mode is ideal for managing containerized
applications in production environments where you need high availability and automatic
failover.
Distributed Applications: If your application needs to run across multiple servers or
cloud instances, Docker Swarm provides the tools to manage the cluster efficiently.
Scaling: If you expect your application to scale, Swarm Mode lets you easily add or
remove replicas of your services without downtime.

Docker Swarm Mode is a powerful feature for managing and orchestrating containerized
applications across a cluster of machines. It simplifies complex tasks like scaling, load balancing,
and maintaining application availability, all while being integrated directly into Docker Engine. With
Docker Swarm, you can manage multiple Docker hosts as one, ensuring your applications are
resilient, scalable, and easy to update.

When to Use Docker Swarm Mode?

Conclusion

Revision #8
Created 29 August 2024 16:12:56 by aeoneros
Updated 11 September 2024 13:14:08 by aeoneros


