Overview - How does Docker
Networks work?

docker

Container networking refers to the ability for containers to

connect to and communicate with each other, or to non-Docker workloads.

Containers have networking enabled by default, and they can make outgoing connections. A
container has no information about what kind of network it's attached to, or whether its peers are
also Docker workloads or not. A container only sees a network interface with an IP address, a
gateway, a routing table, DNS services, and other networking details. That is, unless the container
uses the none network driver.

This page describes networking from the point of view of the container, and the concepts around
container networking. It doesn’t cover OS-specific details about how Docker networks work. For

more information about how Docker manipulates iptables rules on Linux, see Packet filtering and

firewalls.

User-Defined Networks

You can create custom, user-defined networks and connect multiple containers to the same
network. Once connected, containers can communicate with each other using container IP
addresses or container names.


https://docs.docker.com/engine/network/
https://docs.docker.com/network/iptables/
https://docs.docker.com/network/iptables/

docker network create -d bridge my-net

docker run --network=my-net -itd --name=container3 busybox

Drivers

The following network drivers are available by default and provide core networking functionality:

Driver Description
bridge The default network driver.
host Removes network isolation between the container and the

Docker host.

none Completely isolates a container from the host and other
containers.

overlay Connects multiple Docker daemons together.

ipvlan Provides full control over IPv4 and IPv6 addressing.

macvlan Assigns a MAC address to a container.

For more information, take a deepdive into the different Drivers at this Post.

Container Networks

In addition to user-defined networks, you can attach a container to another container's networking
stack directly using the --network container:<name|id> flag format.

The following example demonstrates running a Redis container with Redis binding to localhost,
then running the redis-cli command and connecting to the Redis server:

docker run -d --name redis example/redis --bind 127.0.0.1

docker run --rm -it --network container:redis example/redis-cli -h 127.0.0.1


https://wiki.aeoneros.com/books/docker-guide/page/network-drivers-overviewsummery
https://wiki.aeoneros.com/books/docker-guide/page/network-driverslist-detailed-explanation

Published Ports

By default, containers on bridge networks don’t expose ports to the outside world. Use the --publish
or -p flag to make a port available externally. Examples:

Flag Value Description
-p 8080:80 Maps port 8080 on the Docker host to TCP port 80 in the
container.
-p 192.168.1.100:8080:80 Maps port 8080 on host IP 192.168.1.100 to TCP port 80 in

the container.

-p 8080:80/udp Maps UDP port 8080 on the host to UDP port 80 in the
container.

Important: Publishing container ports is insecure by default. To restrict access, bind ports to
localhost or specific IP addresses.

IP Address and Hosthame

Containers receive an IP address for every network they attach to. The Docker daemon dynamically
assigns these IPs based on the network’s subnet. You can specify IP addresses manually using the
—-ip or --ip6 flags.

By default, a container’s hostname is its ID. You can override this using --hostname .
For additional network aliases, use the --alias flag when connecting a container to a network.

For more details, see the official documentation.

DNS Services

By default, containers inherit DNS settings from the host. You can override these settings using the
following flags:

Flag Description
--dns The IP address of a DNS server.
--dns-search A DNS search domain for non-fully qualified hostnames.

--dns-opt Key-value pairs for DNS options.


https://docs.docker.com/engine/network/#ip-address-and-hostname

For more details, see the official documentation.

Revision #8
Created 18 September 2024 08:34:22 by aeoneros
Updated 15 January 2025 15:36:16 by aeoneros


https://docs.docker.com/engine/network/#dns-services

