
This tutorial introduces Docker Swarm mode, which allows you to

deploy and manage containerized applications across a cluster of Docker nodes. In Swarm mode,
Docker Engine transforms multiple Docker hosts into a single, distributed system, making it easier
to scale, orchestrate, and manage applications.

Initializing a Docker Swarm
Adding nodes to the Swarm
Deploying services to the Swarm
Managing the Swarm (Lightweight Version)

Prerequisites:

You need three Linux hosts (physical or virtual machines) that can communicate over a
network, with Docker installed.
Open ports between the hosts.
The IP address of the manager node.

To get started, you'll need three Linux hosts that can communicate over a network. These hosts
can be physical machines, virtual machines, or cloud instances (e.g., Amazon EC2).

Getting started with Swarm
mode & Create a swarm

What This Tutorial Covers:

Step 1: Setting Up the Environment

https://docs.docker.com/engine/swarm/swarm-tutorial/

One of these hosts will be the manager (we’ll call it manager1).
The other two hosts will be workers (worker1 and worker2).

You can follow most steps of this tutorial on a single-node Swarm (with just one host), but for full
multi-node functionality, you’ll need three hosts.

Follow Docker's official installation instructions for your Linux distribution to install Docker on each
of your machines. Once Docker is installed, you’re ready to create your Swarm.

You’ll need the IP address of the manager node (manager1) for the Swarm to function properly. To
find it, run the following command on manager1 :

This will display a list of available network interfaces. Pick the IP address that is accessible to the
other nodes in the network. The tutorial assumes manager1 has the IP address 192.168.99.100 .

Ensure the following ports are open between all your nodes:

Port 2377 (TCP): For communication between manager nodes.
Port 7946 (TCP/UDP): For node discovery within the overlay network.
Port 4789 (UDP): For overlay network traffic (VXLAN).

If you plan to use an encrypted overlay network, ensure IPSec ESP traffic is allowed on IP
protocol 50.

To secure your swarm further, consider applying the following iptables rule to block untrusted
traffic from reaching the Swarm’s data path port (4789):

Install Docker Engine on Linux Hosts

Check the Manager Node's IP Address

ifconfig

Step 2: Open Required Ports

iptables -I INPUT -m udp --dport 4789 -m policy --dir in --pol none -j DROP

Once your setup is ready, it’s time to initialize the Swarm on your manager node (manager1).

1. SSH into the manager1 machine.
2. Run the following command to initialize the Swarm, specifying the IP address of the

manager node:

docker swarm init --advertise-addr 192.168.99.100

It will also provide the command to add worker nodes to the swarm:

Now that the Swarm is initialized, you can add your worker nodes (worker1 and worker2).

1. SSH into each worker node (worker1 and worker2).
2. Run the docker swarm join command provided when you initialized the Swarm on manager1

.

For example, on worker1 , the command might look like this:

Step 3: Initializing the Swarm

If successful, the output will look like this:

Swarm initialized: current node (dxn1zf6l61qsb1josjja83ngz) is now a manager.

docker swarm join --token <worker-token> 192.168.99.100:2377

Step 4: Adding Worker Nodes to the
Swarm

docker swarm join --token SWMTKN-1-49nj1cmql0jkz5s954yi3oex3nedyz0fb0xx14ie39trti4wxv-
8vxv8rssmk743ojnwacrr2e7c 192.168.99.100:2377

To verify that all nodes have successfully joined the swarm, SSH into the manager node (
manager1) and run the following command:

You should see all three nodes (manager1 , worker1 , and worker2) listed, along with their roles and
statuses:

The * next to manager1 indicates that you're currently connected to this node. The MANAGER
STATUS column shows that manager1 is the leader.

Now that your swarm is ready, you can deploy a service to it. For example, you can deploy an
Nginx web server service with three replicas:

1. SSH into the manager node (manager1).
2. Run the following command to deploy the service:

This command creates a service called web with three replicas, and each replica runs an
Nginx container listening on port 80. The service is exposed to the outside world on port

docker service create --name web --replicas 3 -p 8080:80 nginx

Repeat this step for worker2 . Once completed, both worker1 and worker2 will join the swarm
and begin listening for tasks from the manager.

Step 5: Verifying the Swarm

docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
dxn1zf6l61qsb1josjja83ngz * manager1 Ready Active Leader
8l3nse6qox9pxdj67c5utodl4 worker1 Ready Active
fxp1kjvthh2qyuodhd83uixg5 worker2 Ready Active

Step 6: Deploying a Service to the Swarm

8080.

After deploying a service, you can monitor and manage your swarm using several Docker
commands.

To see the list of services running in your swarm, use:

To check the status of nodes in your swarm, use:

If you want to scale the number of replicas for a service (e.g., increase Nginx replicas from 3 to 5),
you can run:

To remove a service, use the following command:

Step 7: Managing the Swarm

Viewing Services

docker service ls

Viewing Nodes

docker node ls

Scaling Services

docker service scale web=5

Removing Services

docker service rm web

Docker Swarm Mode simplifies the process of managing containerized applications across multiple
machines. By setting up a swarm and deploying services, you can build a scalable, fault-tolerant
infrastructure with minimal effort. This tutorial has covered the essential steps to get started with
Docker Swarm, from initializing the swarm to managing services on it.

Conclusion

Revision #5
Created 29 August 2024 14:51:03 by aeoneros
Updated 11 September 2024 14:27:50 by aeoneros

