
Swarm mode Overview & Key Concepts
How Nodes work
How Services work
Getting started with Swarm mode & Create a swarm
Understanding Docker Swarm Mode Routing Mesh

Swarm Mode

Docker Swarm Mode is a feature within Docker that allows you to

manage a cluster of Docker nodes (computers running Docker) as if they were a single machine.
This is extremely useful for deploying applications that require multiple containers distributed
across various servers. It provides built-in tools for clustering, service orchestration, load balancing,
and scaling without needing extra software.

In simple terms, Swarm Mode turns a collection of computers running Docker into a "swarm,"
allowing you to manage services across these machines as though they were one system.

When you deploy an application to a swarm, here’s what happens:

Swarm mode Overview &
Key Concepts

How Docker Swarm Mode Works

https://docs.docker.com/engine/swarm/
https://wiki.aeoneros.com/uploads/images/gallery/2024-09/3zh7ZTM0tufMvk6C-logo-1.png

1. You define a service (e.g., a web server) that should run in the swarm.
2. You tell Docker how many replicas (copies) of this service you want running at all times.
3. Docker ensures that these replicas are distributed across the available nodes.
4. If one node fails or a container crashes, Docker automatically adjusts to maintain the

desired state.

A node is any machine that is part of a Docker Swarm cluster. Nodes can either be manager
nodes (which control the swarm) or worker nodes (which run containers). In a real-world
production environment, nodes are often spread across multiple physical servers or cloud
machines.

Manager Node: Manages the cluster by keeping track of tasks and assigning them to
workers. The manager also ensures that the desired number of containers are always
running.
Worker Node: Receives and executes tasks given by the manager. Workers run the
containers but do not manage the swarm.

A service is a definition of what needs to be run in the swarm. When you create a service,
you specify things like the container image to use and how many copies (replicas) of the
service should run.
There are two types of services:

Replicated Services: The swarm manager assigns a set number of replica tasks to
run across the available nodes.
Global Services: A task for this service runs on every node in the swarm.

A task is a unit of work, which includes running a Docker container. Each task is
scheduled by the swarm manager to be executed on one of the worker nodes. Once a task
is assigned to a node, it remains on that node until it completes or fails.

Here’s an example: Let’s say you want to run a web application in a swarm with 5 replicas of
a web server. Docker will create 5 containers and distribute them across the nodes in the
swarm. If one node fails, Docker will automatically start new containers on other nodes to
keep 5 web servers running.

Key Concepts in Docker Swarm Mode
1. Nodes

2. Services and Tasks

3. Load Balancing

Docker Swarm has built-in load balancing to distribute traffic between the different containers
running on the swarm. When external users access a service, the traffic is routed to any node in
the swarm, and that node forwards the request to the appropriate container running the service.
Swarm uses ingress load balancing for external traffic and internal DNS-based load
balancing for traffic within the swarm.

One of the most important features of Docker Swarm is its ability to maintain the desired state.
The manager nodes constantly monitor the swarm and automatically adjust the number of
containers to match what you have defined. For example, if one of the worker nodes fails, the
manager will ensure that new containers are created on other nodes to maintain the required
number of replicas.

Cluster Management: Swarm Mode provides built-in tools for managing a cluster of
Docker nodes without needing additional software.
Declarative Service Model: You define what you want your application to look like
(number of containers, network, resources) and Docker ensures it matches your
specification.
Automatic Scaling: You can increase or decrease the number of service replicas at any
time, and Docker will automatically adjust the cluster to match.
Rolling Updates: When you update your application, Docker can gradually roll out the
update to your nodes. If something goes wrong, you can roll back to a previous version of
the service.
Multi-Host Networking: Docker allows services to communicate across different nodes
using an overlay network. This simplifies networking across nodes in different locations.
Service Discovery: Docker Swarm automatically assigns each service a DNS name, so
containers can find and communicate with each other easily.
Security: Docker Swarm Mode is secure by default. All communications between nodes in
the swarm are encrypted using TLS, and each node must authenticate itself to the others.

When running Docker in Swarm Mode, you can still use standalone containers alongside your
swarm services. However, there are key differences between the two:

Swarm Services: These are managed by the swarm manager and offer advanced
features like scaling, load balancing, and automatic updates.
Standalone Containers: These are not part of the swarm, and you manage them
manually, just like regular Docker containers.

4. Desired State Reconciliation

Docker Swarm Mode Features

Swarm Mode vs. Standalone Containers

Production Environments: Swarm Mode is ideal for managing containerized
applications in production environments where you need high availability and automatic
failover.
Distributed Applications: If your application needs to run across multiple servers or
cloud instances, Docker Swarm provides the tools to manage the cluster efficiently.
Scaling: If you expect your application to scale, Swarm Mode lets you easily add or
remove replicas of your services without downtime.

Docker Swarm Mode is a powerful feature for managing and orchestrating containerized
applications across a cluster of machines. It simplifies complex tasks like scaling, load balancing,
and maintaining application availability, all while being integrated directly into Docker Engine. With
Docker Swarm, you can manage multiple Docker hosts as one, ensuring your applications are
resilient, scalable, and easy to update.

When to Use Docker Swarm Mode?

Conclusion

A swarm is a group of Docker hosts (servers running Docker) that are connected and work
together to run containerized applications. Each host can play one of two roles:

1. Manager: A node that controls the swarm. It handles the cluster management tasks, such
as assigning workloads (tasks) to worker nodes and maintaining the desired state of the
services.

2. Worker: A node that does the actual work by running containers. The worker nodes
execute the tasks assigned by the manager.

How Nodes work

What are Roles?

Any Docker host in the swarm can be a manager, a worker, or even perform both roles.

Let’s walk through an example where we set up a Docker Swarm with three
nodes, all acting as manager nodes. This scenario is useful when you want
high availability and fault tolerance in your cluster, meaning if one or two
manager nodes fail, the remaining nodes can continue managing the swarm.

In a Docker Swarm, manager nodes are responsible for handling the cluster's
state, scheduling tasks, and distributing containers to the worker nodes. By

“Example: Creating a 3-Node Docker Swarm with
All Manager Nodes

Why Make All Nodes Managers?

https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/

Manager nodes play a crucial role in maintaining and orchestrating the state of the swarm. They
are responsible for:

Maintaining Cluster State: Manager nodes keep track of the state of the swarm and all
services running on it, ensuring that the desired state (e.g., the number of replicas of a
service) is met.
Scheduling Services: Managers are in charge of scheduling tasks (containers) across
the worker nodes in the swarm.
Serving Swarm Mode HTTP API Endpoints: Manager nodes expose the Swarm mode
HTTP API, which is used to control the swarm via commands or automation.

Docker Swarm uses a Raft consensus algorithm to ensure that the state of the swarm is
consistent across all manager nodes. This is particularly important for high availability. The general
rule is that an odd number of managers provides fault tolerance, allowing the swarm to continue

making all three nodes managers, you ensure that your swarm can tolerate
failures of one or even two nodes and still function. This is known as high
availability because the swarm can elect a new leader and continue operating
without downtime.

If you haven't already, read through the Swarm mode overview and key concepts.

Manager Nodes

Fault Tolerance and High Availability

https://wiki.aeoneros.com/uploads/images/gallery/2024-09/d0yVECI49O6mIGRH-swarm-diagram.png
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/key-concepts/

functioning if some managers fail.

A three-manager swarm can tolerate the loss of one manager node.
A five-manager swarm can tolerate the loss of two manager nodes.

The formula for fault tolerance is that a swarm can tolerate the loss of at most (N-1)/2 manager
nodes, where N is the total number of managers.

Odd Number of Managers: To take full advantage of Docker’s fault tolerance, always
use an odd number of manager nodes. This ensures that the swarm can maintain quorum
(i.e., the minimum number of nodes needed to keep the swarm functional).
Limit the Number of Managers: Although adding more manager nodes increases fault
tolerance, it does not improve performance or scalability. In fact, having too many
manager nodes can slow down decision-making processes. Docker recommends a
maximum of seven managers in a swarm.

If you’re running a single-manager swarm and the manager node fails, the services on the worker
nodes will continue to run, but you won’t be able to control or update the swarm. You’d need to
recreate the swarm to recover full control.

In contrast, when running a swarm with multiple managers, if one manager fails, the remaining
managers can take over, ensuring that the swarm continues to operate without downtime.

Worker nodes are simpler compared to manager nodes. Their primary purpose is to execute
containers. Worker nodes don't participate in swarm management decisions and don’t maintain
the state of the swarm.

Executing Tasks: Workers run the containers assigned to them by the manager nodes.
They receive tasks (containers to run) and report back to the managers on the status of
these tasks.
No Raft Participation: Worker nodes do not store the cluster's state and don’t
participate in the Raft consensus. This allows them to focus purely on running workloads.

Best Practices for Manager Nodes

Manager Node Failure

Worker Nodes

Worker Node Setup

In any Docker Swarm, there must be at least one manager node, but you can have any number of
worker nodes. By default, all manager nodes also act as workers, meaning they can schedule tasks
and run containers.

However, if you want to prevent managers from running containers (e.g., to dedicate them solely
to management tasks), you can adjust their availability. This brings us to the concept of Drain
Mode.

In a multi-node swarm, you may want to prevent managers from running any tasks or containers.
For example, you might want to ensure that managers are purely dedicated to orchestration and
scheduling tasks, leaving the heavy lifting of running containers to worker nodes.

You can change the availability of a manager node to Drain mode, which means the scheduler will
not assign new tasks to that node, and existing tasks will be moved to other nodes.

To set a manager node to Drain mode, you can run the following command:

Swarm mode also provides flexibility when it comes to changing the roles of your nodes. You can
promote a worker node to become a manager or demote a manager node to a worker if needed.

Manager Node Availability and Drain Mode

docker node update --availability drain <manager-node-name>

This will ensure that the manager node doesn't run any new tasks but continues its role as a
swarm manager, making scheduling decisions and maintaining the cluster's state.

Changing Roles: Promoting and Demoting
Nodes

Promoting a Worker to a Manager

If you want to add more fault tolerance to your swarm or need to take a manager node offline for
maintenance, you can promote a worker node to a manager. This is done with the following
command:

This is useful in situations where you want to ensure that the cluster remains highly available, even
if one of your manager nodes needs to be taken down.

If you no longer need a manager node or want to reduce the number of managers for better
performance, you can demote a manager back to a worker. This can be done using:

Understanding the roles of manager and worker nodes in Docker Swarm is essential for creating
a stable, highly available, and scalable cluster. Manager nodes handle critical tasks such as
maintaining the cluster state and scheduling services, while worker nodes focus purely on running
containers.

In larger clusters, having multiple manager nodes ensures that your swarm can tolerate failures
without disrupting service. However, it’s important to maintain an odd number of managers for
fault tolerance and to avoid adding too many managers, as this can slow down the swarm’s
performance.

By effectively using Drain mode and node promotion/demotion, you can adjust your swarm’s
architecture to meet your organization’s needs, ensuring optimal performance and availability.

docker node promote <worker-node-name>

Demoting a Manager to a Worker

docker node demote <manager-node-name>

Conclusion

When Docker Engine operates in Swarm mode, services become

the fundamental units for deploying and managing applications. A service is essentially a set of
instructions for running containerized applications across multiple Docker nodes. This might be part
of a larger application, such as a microservice architecture, or it could be a stand-alone service like
an HTTP server or a database.

A service in Docker Swarm represents a task that you want to run, such as running a containerized
application.
When you create a service, you specify a few essential options:

The container image to use for the service.
Commands to execute inside the running containers.
The port to expose to make the service available outside the swarm.
An overlay network to connect the service with other services within the swarm.
CPU and memory limits for the resources allocated to each service instance.
Rolling update policies to control how services are updated across the swarm.
The number of replicas (i.e., how many copies of the service) you want to run.

Once you define the service, the swarm manager takes your service definition and turns it into
one or more tasks. A task is the smallest unit of work in a swarm and represents a single instance
of a container running on a node.

For example, if you want to balance traffic between three instances of a web server, you might
deploy a service with three replicas. Each replica is a task, and each task runs one container on a

How Services work

What is a Service?

Services, Tasks, and Containers

https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/

different node.

Service: Defines the application you want to run.
Task: A unit of work managed by the swarm that runs a single container.
Container: The actual application process that runs as part of a task on a node.

In short, when you deploy a service, you define the desired state, and Docker Swarm schedules
that service across the available nodes.

When you create or update a service, you declare a desired state (e.g., three instances of an HTTP
service). The orchestrator (which is part of the swarm manager) ensures that this state is met by
creating and scheduling tasks. For instance, if you define a service with three replicas, the swarm
manager creates three tasks. Each task runs a container on a node.

If a container crashes or fails its health check, the orchestrator detects the failure and schedules a
new task to replace it, ensuring that the desired state of the service is always maintained.

Tasks and Scheduling

https://wiki.aeoneros.com/uploads/images/gallery/2024-09/JfSQZSRjQE5MHFRG-services-diagram.webp

Sometimes, a service may remain in a pending state, meaning that it cannot be deployed yet.
Here are a few scenarios where this might happen:

Node Availability: If no nodes are available to run tasks (e.g., all nodes are in paused or
drained mode), the service will remain in the pending state until nodes become available.
Resource Constraints: If the service requires more memory or CPU than any node can
provide (e.g., a service requiring 500GB of RAM but no node has that capacity), the
service will stay pending.
Placement Constraints: If the service is configured with specific placement constraints
(e.g., to only run on certain nodes), it may stay pending until a suitable node is available.

Pending Services

Tip:
In these cases, it is often better to scale the service to zero replicas if your goal is to pause
the service temporarily.
If your only intention is to prevent a service from being deployed, scale the service to 0
instead of trying to configure it in such a way that it remains in pending .

https://wiki.aeoneros.com/uploads/images/gallery/2024-09/09UmMxLiH2FF5jti-service-lifecycle.webp

There are two types of services in Docker Swarm: replicated services and global services.

For replicated services, you specify the number of identical tasks you want to run. Each replica
runs on a separate node, providing redundancy and load balancing. For example, if you create a
service with three replicas, the swarm manager ensures that three identical instances (tasks) of the
service are running on different nodes.

This is useful for applications like web servers, where you want multiple instances of the same
service to handle requests simultaneously.

A global service runs one instance of the service on every node in the swarm. You do not
specify the number of replicas; instead, the swarm ensures that each node runs exactly one
instance of the service.

Global services are ideal for tasks like monitoring or logging agents, where you want each node to
run the same service. For example, you might use a global service to run an anti-virus scanner or a
network monitoring agent on every node in your swarm.

Replicated and Global Services

Replicated Services

Global Services

The diagram below shows a three-service replica in gray and a global service in black.

https://wiki.aeoneros.com/uploads/images/gallery/2024-09/DqOYPTcAGINm9fPD-replicated-vs-global.webp

This tutorial introduces Docker Swarm mode, which allows you to

deploy and manage containerized applications across a cluster of Docker nodes. In Swarm mode,
Docker Engine transforms multiple Docker hosts into a single, distributed system, making it easier
to scale, orchestrate, and manage applications.

Initializing a Docker Swarm
Adding nodes to the Swarm
Deploying services to the Swarm
Managing the Swarm (Lightweight Version)

Prerequisites:

You need three Linux hosts (physical or virtual machines) that can communicate over a
network, with Docker installed.
Open ports between the hosts.
The IP address of the manager node.

To get started, you'll need three Linux hosts that can communicate over a network. These hosts
can be physical machines, virtual machines, or cloud instances (e.g., Amazon EC2).

Getting started with Swarm
mode & Create a swarm

What This Tutorial Covers:

Step 1: Setting Up the Environment

https://docs.docker.com/engine/swarm/swarm-tutorial/

One of these hosts will be the manager (we’ll call it manager1).
The other two hosts will be workers (worker1 and worker2).

You can follow most steps of this tutorial on a single-node Swarm (with just one host), but for full
multi-node functionality, you’ll need three hosts.

Follow Docker's official installation instructions for your Linux distribution to install Docker on each
of your machines. Once Docker is installed, you’re ready to create your Swarm.

You’ll need the IP address of the manager node (manager1) for the Swarm to function properly. To
find it, run the following command on manager1 :

This will display a list of available network interfaces. Pick the IP address that is accessible to the
other nodes in the network. The tutorial assumes manager1 has the IP address 192.168.99.100 .

Ensure the following ports are open between all your nodes:

Port 2377 (TCP): For communication between manager nodes.
Port 7946 (TCP/UDP): For node discovery within the overlay network.
Port 4789 (UDP): For overlay network traffic (VXLAN).

If you plan to use an encrypted overlay network, ensure IPSec ESP traffic is allowed on IP
protocol 50.

To secure your swarm further, consider applying the following iptables rule to block untrusted
traffic from reaching the Swarm’s data path port (4789):

Install Docker Engine on Linux Hosts

Check the Manager Node's IP Address

ifconfig

Step 2: Open Required Ports

iptables -I INPUT -m udp --dport 4789 -m policy --dir in --pol none -j DROP

Once your setup is ready, it’s time to initialize the Swarm on your manager node (manager1).

1. SSH into the manager1 machine.
2. Run the following command to initialize the Swarm, specifying the IP address of the

manager node:

docker swarm init --advertise-addr 192.168.99.100

It will also provide the command to add worker nodes to the swarm:

Now that the Swarm is initialized, you can add your worker nodes (worker1 and worker2).

1. SSH into each worker node (worker1 and worker2).
2. Run the docker swarm join command provided when you initialized the Swarm on manager1

.

For example, on worker1 , the command might look like this:

Step 3: Initializing the Swarm

If successful, the output will look like this:

Swarm initialized: current node (dxn1zf6l61qsb1josjja83ngz) is now a manager.

docker swarm join --token <worker-token> 192.168.99.100:2377

Step 4: Adding Worker Nodes to the
Swarm

docker swarm join --token SWMTKN-1-49nj1cmql0jkz5s954yi3oex3nedyz0fb0xx14ie39trti4wxv-
8vxv8rssmk743ojnwacrr2e7c 192.168.99.100:2377

To verify that all nodes have successfully joined the swarm, SSH into the manager node (
manager1) and run the following command:

You should see all three nodes (manager1 , worker1 , and worker2) listed, along with their roles and
statuses:

The * next to manager1 indicates that you're currently connected to this node. The MANAGER
STATUS column shows that manager1 is the leader.

Now that your swarm is ready, you can deploy a service to it. For example, you can deploy an
Nginx web server service with three replicas:

1. SSH into the manager node (manager1).
2. Run the following command to deploy the service:

This command creates a service called web with three replicas, and each replica runs an
Nginx container listening on port 80. The service is exposed to the outside world on port

docker service create --name web --replicas 3 -p 8080:80 nginx

Repeat this step for worker2 . Once completed, both worker1 and worker2 will join the swarm
and begin listening for tasks from the manager.

Step 5: Verifying the Swarm

docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
dxn1zf6l61qsb1josjja83ngz * manager1 Ready Active Leader
8l3nse6qox9pxdj67c5utodl4 worker1 Ready Active
fxp1kjvthh2qyuodhd83uixg5 worker2 Ready Active

Step 6: Deploying a Service to the Swarm

8080.

After deploying a service, you can monitor and manage your swarm using several Docker
commands.

To see the list of services running in your swarm, use:

To check the status of nodes in your swarm, use:

If you want to scale the number of replicas for a service (e.g., increase Nginx replicas from 3 to 5),
you can run:

To remove a service, use the following command:

Step 7: Managing the Swarm

Viewing Services

docker service ls

Viewing Nodes

docker node ls

Scaling Services

docker service scale web=5

Removing Services

docker service rm web

Docker Swarm Mode simplifies the process of managing containerized applications across multiple
machines. By setting up a swarm and deploying services, you can build a scalable, fault-tolerant
infrastructure with minimal effort. This tutorial has covered the essential steps to get started with
Docker Swarm, from initializing the swarm to managing services on it.

Conclusion

Docker Swarm Mode introduces the concept of a routing

mesh, a powerful feature that simplifies the process of exposing services to external clients in a
swarm cluster. This tutorial provides an overview of how the ingress network and routing mesh
work, how to publish ports for services, and how to configure an external load balancer like
HAProxy to interact with a Swarm service.

The routing mesh in Docker Swarm Mode allows all nodes in the swarm to accept connections to
a published service port, even if the service isn't running on that particular node. The routing mesh
automatically routes incoming requests to a node where an instance of the service is active,
ensuring the requests are handled efficiently and transparently.

The ingress network is a special network created by Docker for the purpose of handling the
routing mesh. All Swarm services are connected to the ingress network, allowing them to
communicate and route requests to the correct node.

Before you enable Swarm Mode and use the ingress network, make sure the following ports are
open between the swarm nodes:

Understanding Docker
Swarm Mode Routing Mesh

What is the Routing Mesh?

Ingress Network

Key Ports to Open

https://docs.docker.com/engine/swarm/ingress/

Port 7946 (TCP/UDP): For container network discovery.
Port 4789 (UDP): For the container ingress network (VXLAN).

When you publish a service in Docker Swarm, each node in the swarm can receive traffic for that
service, regardless of whether the service is running on that node or not. The swarm manager's
routing mesh ensures that requests are forwarded to the appropriate node where the service is
active.

You have three nodes in your swarm:

node1 with IP 192.168.99.100
node2 with IP 192.168.99.101
node3 with IP 192.168.99.102

You deploy a service called my-web using the Nginx container. Even if the Nginx container is only
running on node1 and node2 , you can send a request to node3 , and Docker will route that request
to one of the active containers running on node1 or node2 .

Here’s an example of the command to create the service with two replicas:

In this case, the Nginx service is available on port 8080 on all swarm nodes.

How the Routing Mesh Works

Example:

docker service create \
 --name my-web \
 --publish published=8080,target=80 \
 --replicas 2 \
 nginx

To expose a service to the outside world, you use the --publish flag when creating the service. This
flag lets you map a port on the node (published port) to a port inside the container (target port).

For example:

This command publishes port 8080 on the swarm nodes and maps it to port 80 inside the Nginx
container.

published: The port that the swarm makes available outside the container.
target: The port that the container listens on (inside the container).

In the diagram above, you can see that requests sent to any node on port 8080 are routed
to the appropriate Nginx instance.

Publishing a Port for a Service

docker service create \
 --name my-web \
 --publish published=8080,target=80 \
 nginx

https://wiki.aeoneros.com/uploads/images/gallery/2024-09/P7k7ch6pnNMLF156-ingress-routing-mesh.webp

You can use docker service inspect to view detailed information about a service, including which ports
have been published.

For example, to inspect the my-web service:

The output will show the TargetPort (the container’s internal port) and the PublishedPort (the port on
the swarm nodes):

In a real-world production scenario, you may want to use an external load balancer such as
HAProxy to handle traffic across multiple swarm nodes. The load balancer can distribute incoming
traffic to the nodes in the swarm, which will then use the routing mesh to route the traffic to the
correct container.

The following HAProxy configuration listens on port 80 and forwards requests to the my-web
service running on port 8080 on the swarm nodes:

Viewing Published Ports with docker service
inspect

docker service inspect --format="{{json .Endpoint.Spec.Ports}}" my-web

[{"Protocol":"tcp","TargetPort":80,"PublishedPort":8080}]

Configuring an External Load Balancer
with the Routing Mesh

Example HAProxy Configuration

global
 log /dev/log local0
 log /dev/log local1 notice

frontend http_front

 bind *:80
 stats uri /haproxy?stats
 default_backend http_back

backend http_back
 balance roundrobin
 server node1 192.168.99.100:8080 check
 server node2 192.168.99.101:8080 check
 server node3 192.168.99.102:8080 check

This configuration ensures that incoming traffic on port 80 is distributed across the nodes (
node1 , node2 , and node3) on port 8080 .

In the above diagram, the HAProxy load balancer distributes requests across all nodes in the
swarm, and the swarm routing mesh ensures that traffic is forwarded to an active container.

https://wiki.aeoneros.com/uploads/images/gallery/2024-09/NOerLxhqe3RVi2BZ-ingress-lb.webp

In some cases, you may want to bypass the routing mesh so that requests are sent directly to the
node that is running the service. This is useful when you want to ensure that only nodes running
the service are accessible on the published port. This mode is referred to as host mode.

To bypass the routing mesh, use the --publish flag with the mode=host option:

If you want to bypass the routing mesh entirely, you can configure an external load balancer to
handle traffic without relying on the Swarm's built-in load balancing.

Use --endpoint-mode dnsrr to configure Docker to return a list of IP addresses for the nodes running
the service when queried, rather than a virtual IP. This allows your external load balancer to
directly handle traffic distribution based on DNS entries.

Example:

Bypassing the Routing Mesh (Host Mode)

docker service create --name dns-cache \
 --publish published=53,target=53,protocol=udp,mode=host \
 --mode global \
 dns-cache

In host mode, traffic sent to a node will only be handled if that node is running the service
task. Otherwise, the connection will fail.

Using an External Load Balancer Without
the Routing Mesh

docker service create \
 --name my-web \
 --publish published=8080,target=80 \
 --endpoint-mode dnsrr \
 nginx

Docker Swarm Mode's routing mesh and ingress network provide powerful and flexible ways to
expose services to external clients. By using the routing mesh, all swarm nodes can participate in
traffic routing, providing high availability and fault tolerance. For more control, you can configure
external load balancers like HAProxy or bypass the routing mesh entirely to meet specific needs.

Whether you are using the default routing mesh or integrating with an external load balancer,
Docker Swarm Mode simplifies the process of deploying and scaling services across distributed
systems.

In this mode, the load balancer directly routes traffic to nodes running the service, without
going through the swarm routing mesh.

Conclusion

