
What is Dockerengine?
Docker vs. VM
Install Docker Engine on Debian

Getting Started with
Docker & Docker
Engine

Docker Engine is the heart of Docker, a technology that allows you to create and run small,
lightweight packages called containers. These containers are like tiny virtual machines but much
more efficient. They contain everything an application needs to run, including the code, system
libraries, and settings, so it behaves the same on any computer.

https://www.youtube.com/embed/rIrNIzy6U_g

Docker Daemon: This is the background service that handles container management on
a Docker host. It listens for Docker API requests and manages the lifecycle of Docker
containers, including starting, stopping, and monitoring.
REST API: This API allows external tools and programs to communicate with the Docker
Daemon, making it possible to manage Docker resources programmatically.
Docker CLI: The Command-Line Interface (CLI) provides users with the ability to interact
with the Docker Daemon using commands. It allows for creating and managing
containers, images, networks, and volumes from the terminal.

Docker Engine can run on any Linux-based operating system, including distributions like Debian,
Ubuntu, and CentOS, as well as other systems like Windows and macOS using platform-specific
adaptations. On Linux systems, Docker containers share the host's kernel, making them lightweight
and highly efficient.

What is Dockerengine?

Overview

Docker 101

Docker Engine consists of the following major components:

https://www.youtube.com/embed/rIrNIzy6U_g
https://docs.docker.com/engine/

At its core, Docker Engine uses a client-server model. You, the user, interact with Docker by
typing commands (using the CLI) or through other software (via the REST API). The Docker
Daemon (the server part) listens to these requests and manages all the containers on your
system.

Images and Containers: Containers are created from something called images. Think
of an image as a template or blueprint for a container. When you run an image, it
becomes a container that can actually perform tasks.
Layers and File System: Docker Engine makes things more efficient by building
containers in layers, where each layer represents a change or addition to the image. This
way, Docker doesn’t need to rebuild everything from scratch each time you make
changes.
Isolation and Resources: Docker Engine uses special features in the Linux kernel (the
core of the operating system) to isolate containers from each other, ensuring that one
container’s actions don’t affect another. It also controls how much CPU, memory, and
other resources each container can use.

Lightweight: Containers don’t need their own operating system; they use the host
system’s resources. This makes them much smaller and faster than virtual machines.
Portability: Once you create a container, it will run the same way on any system that has
Docker, no matter where it is. This makes it easy to move your application from your
computer to a cloud server or any other environment.
Fast: Containers start up almost instantly because they don’t have to load a whole
operating system. This makes them ideal for quick testing and development.
Isolation: Each container has its own environment, meaning that your application and its
dependencies won’t interfere with other applications on the same system.

Networking: Docker Engine allows containers to communicate with each other and the
outside world through networks. You can connect containers together or expose them to
the internet easily.
Storage: Docker Engine can manage data that needs to persist even when containers are
restarted or deleted. It does this using volumes (for storing data outside of containers) or
bind mounts (which link folders on the host system to containers).
Orchestration Support: For larger applications, Docker Engine works well with tools like
Docker Swarm and Kubernetes. These tools help manage and automate the running of

How Does Docker Engine Work?

Key Features of Docker Engine

More Capabilities of Docker Engine

many containers at once, often across multiple servers.

Interested on More?
Check Out "Docker Vs VM's"

https://wiki.aeoneros.com/books/docker-guide/page/docker-vs-vm

In this article, we'll break down the differences between Docker and Virtual Machines (VMs),
providing insights to help you decide which technology might be the better fit for your needs. Both
Docker and VMs are essential tools for running applications, but they serve different purposes.
Before diving into the comparison, let’s start with a brief explanation of each.

In today's rapidly evolving tech world, organizations aim to digitize their businesses, but often face
challenges with managing diverse applications across cloud and on-premises infrastructure. Docker
addresses this challenge by providing a container platform that can host traditional applications
and modern microservices, running on both Linux and Windows.

Docker is a tool and a form of virtualization technology that simplifies the development,
deployment, and management of applications. It achieves this by using containers, which are
lightweight, self-contained packages that bundle everything needed to run an application, such as

Docker vs. VM

Overview

What is Docker?

https://www.qa.com/resources/blog/docker-vs-virtual-machines-differences-you-should-know/
https://wiki.aeoneros.com/uploads/images/gallery/2024-09/8Gm6x132yE3rU9zn-backblaze-what-are-vms.png

libraries, dependencies, and configuration files.

With Docker, applications run consistently across different systems because the container includes
all the necessary elements. Containers are lightweight since they don’t need a separate operating
system like virtual machines do. Instead, Docker containers share the host system’s OS kernel,
making them faster and more efficient.

Key benefits of containers include:

Reduced IT management overhead
Smaller snapshots of applications
Faster startup times
Easier security updates
Simplified code migration and deployment

A Virtual Machine (VM), on the other hand, is a technology that allows a single physical machine
to run multiple independent operating systems, each with its own resources. VMs are typically used
when performing tasks that might be risky for the host system, such as running potentially harmful
software or testing new operating systems. VMs offer strong isolation, so any issues inside a VM
won't affect the host system.

Each VM is a complete system with its own operating system, virtual hardware, and resources like
CPU, memory, and storage. A physical host can run multiple VMs, allowing for different
environments to run simultaneously. VMs are commonly used in server virtualization, where a
physical server is divided into several VMs to optimize hardware utilization.

What is a Virtual Machine (VM)?

https://wiki.aeoneros.com/uploads/images/gallery/2024-09/J0gddbgBgmjPHPJy-backblaze-what-are-containers.png

There are two types of VMs:

System Virtual Machines: Allow multiple VMs to run their own operating systems and
share the physical resources of the host. These are typically managed by a hypervisor.
Process Virtual Machines: Provide a platform-independent environment for running
applications, hiding the underlying hardware details from the application.

While VMs provide strong isolation, they can consume a lot of resources since each VM includes its
own operating system. This leads to longer boot times and higher resource usage compared to
containers.

Now that you know what Docker and VMs are, let's explore the key differences:

Virtual Machines (VMs): VMs require both a host operating system and a guest
operating system for each virtual machine. This guest OS could be any OS (e.g., Linux
or Windows), regardless of what the host OS is. Each VM includes a complete instance of
the operating system, which makes it resource-intensive.

Docker vs Virtual Machines: Key Differences

1. Architecture

https://www.backblaze.com/blog/vm-vs-containers/

Docker: Docker containers, on the other hand, run on a single host OS and share that
OS’s kernel. Because of this, containers are much more lightweight, starting faster and
using fewer system resources. Docker is ideal for running multiple applications on a single
OS kernel.

Virtual Machines (VMs): VMs are more secure by design because they run fully isolated
from one another. Each VM has its own OS, kernel, and security features. For applications
that require heightened security and isolation, VMs are generally the better choice.
Docker: While Docker containers also offer isolation, they share the host’s kernel, which
can pose security risks. Running a compromised container with root access could
potentially lead to an attack on the host system. It’s important to apply additional security
measures when using Docker containers in sensitive environments.

Virtual Machines (VMs): VMs are somewhat portable, but moving them between
different environments (especially with different hardware) can introduce compatibility
issues. VMs are ideal for static applications that don’t need to be moved often.
Docker: Docker containers are extremely portable and can run consistently on any
system with Docker installed. Since they don’t require a guest OS, they can be easily
transferred between different platforms and environments (development, testing,
production), ensuring seamless portability.

Virtual Machines (VMs): VMs require more system resources because each VM must
load its own operating system. This leads to longer boot times and higher resource
consumption for memory, CPU, and storage.
Docker: Docker containers are lightweight, allowing them to start and stop quickly with
minimal overhead. Since containers share the host OS kernel, they use fewer resources,
which leads to better performance and faster scaling.

Virtual Machines (VMs): VMs need more system resources as they load an entire OS for
each instance. Running multiple VMs can quickly consume a large portion of the host’s
CPU, memory, and storage, making them less efficient when compared to Docker
containers.
Docker: Docker containers don’t need a full OS, which makes them highly efficient in
terms of memory and CPU usage. Since containers share resources based on demand,
they are well-suited for applications that need to scale quickly

2. Security

3. Portability

4. Performance

5. Resource Efficiency

Feature Docker Virtual Machines (VMs)

Boot Time Starts in seconds Takes minutes to boot

Architecture Shares host OS kernel Each VM has its own guest OS

Memory Efficiency Lightweight, no need to virtualize Requires full OS for each VM

Isolation Limited isolation, shares host OS Full OS isolation

Deployment Quick and easy deployment Slower and more resource-intensive

Usage Best for containerized apps Better for full OS and high security

Choosing between Docker and VMs depends on your use case:

When to use Docker: If you need to quickly develop, test, and deploy applications,
Docker is a great choice. Containers are portable, lightweight, and work well with modern
development workflows like microservices and CI/CD pipelines. Docker is also ideal for
running applications across different environments without worrying about compatibility
issues.
When to use Virtual Machines (VMs): For applications that require full OS isolation,
increased security, or the ability to run multiple operating systems on the same host, VMs
are the better option. VMs are commonly used in production environments, especially
when security is a primary concern, or when running legacy applications that require a
specific operating system.

Docker and virtual machines are not competing technologies, but rather complementary tools that
serve different purposes. VMs provide strong isolation and are ideal for running applications that
need their own OS, while Docker containers are lightweight, flexible, and designed for quickly
deploying modern applications. Many organizations use both Docker and VMs in a hybrid approach,
depending on the specific needs of their applications and infrastructure.

Both technologies have their strengths, and understanding the differences will help you make the
right choice for your project.

Docker vs Virtual Machine Comparison Table

Should You Choose Docker or Virtual Machines?

Conclusion: Complementary Tools

This Wikipage hase been integrated by aeoneros from the Original Source: Docker.Docks

OS Requirements

To install Docker Engine, you need the 64-bit version of one of these Debian versions:

Debian Bookworm 12 (stable)
Debian Bullseye 11 (oldstable)

Docker Engine for Debian is compatible with x86_64 (or amd64), armhf, arm64, and ppc64le
(ppc64el) architectures.

Uninstall Old Versions

Install Docker Engine on
Debian

To get started with Docker Engine on Debian, make sure you meet the prerequisites, and
then follow the installation steps.

Prerequisites
OS requirements

Uninstall old versions

https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/debian/
https://wiki.dndforge.ch/link/22#bkmrk-prerequisites
https://docs.docker.com/engine/install/debian/#installation-methods

fore you can install Docker Engine, you need to uninstall any conflicting packages.

Distro maintainers provide unofficial distributions of Docker packages in their repositories. You
must uninstall these packages before you can install the official version of Docker Engine.

The unofficial packages to uninstall are:

docker.io
docker-compose
docker-doc
podman-docker

Moreover, Docker Engine depends on containerd and runc . Docker Engine bundles these
dependencies as one bundle: containerd.io . If you have installed the containerd or runc
previously, uninstall them to avoid conflicts with the versions bundled with Docker Engine.

Run the following command to uninstall all conflicting packages:

apt-get might report that you have none of these packages installed.

for pkg in docker.io docker-doc docker-compose podman-docker containerd runc; do sudo apt-get remove
$pkg; done

Images, containers, volumes, and networks stored in /var/lib/docker/ aren't automatically
removed when you uninstall Docker. If you want to start with a clean installation, and
prefer to clean up any existing data, read the uninstall Docker Engine section.

Installation for Linux
Before you install Docker Engine for the first time on a new host machine, you need to set
up the Docker apt repository. Afterward, you can install and update Docker from the
repository.

1. Set up Docker's apt repository

https://docs.docker.com/engine/install/debian/#uninstall-docker-engine

To install the latest version, run:

3. Verify that the installation is successful by running the hello-world image:

This command downloads a test image and runs it in a container. When the container runs, it prints
a confirmation message and exits.

Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/debian/gpg -o /etc/apt/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc

Add the repository to Apt sources:
echo \
 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc]
https://download.docker.com/linux/debian \
 $(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
 sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update

If you use a derivative distro, such as Kali Linux, you may need to substitute the part of this
command that's expected to print the version codename:
$(. /etc/os-release && echo "$VERSION_CODENAME")
Replace this part with the codename of the corresponding Debian release, such as bookworm
.

2. Install the Docker packages

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin

sudo docker run hello-world

You have now successfully installed and started Docker Engine.

