
Selfhost your own End-to-End encrypted Webapplication Chat.

Overview

What is Databag?

Getting Started

Step-by-Step Setup Guide for Databag with Traefik
Step-by-Step Setup Guide Coturn - TURN Server

Databag Encrypted
Chat

Overview

Overview

Databag is a lightweight, decentralized messaging platform designed for efficiency and privacy. It
enables direct communication between users and server nodes with a focus on end-to-end
encryption and federation.

Decentralized communication (direct app-to-server node connection)
Federated network (users on different nodes can communicate)
Public-Private key based identity (not tied to blockchain or domains)
End-to-End encryption (even admins can't see sealed topics)
Audio and Video Calls (supports NAT traversal with a relay server)
Topic-based threads (messages are organized by topics)
Unlimited participants in threads
Low latency with websockets for real-time communication
Mobile alerts for messages, contacts, and calls
Multi-Factor Authentication (supports TOTP apps)
Runs on minimal hardware (e.g., Raspberry Pi Zero)

What is Databag?

Keyfeatures

https://wiki.dndforge.ch/uploads/images/gallery/2024-09/Ot77lQOoFS2b2cPK-github-logo.png
https://hub.docker.com/r/balzack/databag

Getting Started

Getting Started

This guide will walk you through the setup process of deploying Databag, a decentralized and
lightweight messaging system, in combination with Traefik as a reverse proxy using Docker Swarm.
The configuration ensures that Databag runs efficiently across your Swarm nodes with persistent
data storage.

To ensure that Databag's data is available across all Docker Swarm nodes, you will need to create
a shared directory using GlusterFS. This directory will store the application's data.

Run the following command:

Step-by-Step Setup Guide
for Databag with Traefik

Step 1: Set Up Data Directory in GlusterFS

mkdir /mnt/glustermount/data/databagchat_data

https://github.com/balzack/databag?tab=readme-ov-file
https://hub.docker.com/r/balzack/databag/tags

This directory will be used to store Databag’s data, making it accessible across all nodes in the
swarm.

Next, you need to create a docker-compose.yaml file that defines the Databag service and its
configuration. This file will also include Traefik as the reverse proxy to handle incoming
HTTP/HTTPS traffic.

1. Create the file:
Navigate to the directory where you want to store your Docker Compose file, and create it
with the following command:

nano docker-compose.yaml

2. Edit the Admin Password:
Replace ${DATABAG_PASSWORD} with a secure password or define it as an environment
variable for added security. This password will be used to manage your Databag instance.

Here's the Docker Compose file structure:

Step 2: Create a docker-
compose.yaml File

version: "3.8"

services:
 databag:
 image: balzack/databag:0.1.17
 environment:
 # The ADMIN environment variable sets the admin password for the Databag application.
 # Replace ${DATABAG_PASSWORD} with your actual password or securely manage it via a secrets
manager.
 - ADMIN=${DATABAG_PASSWORD}
 volumes:
 # The following volume ensures persistent storage for Databag's data across Swarm nodes.
 - /mnt/glustermount/data/databagchat_data:/var/lib/databag
 networks:

Here are some additional environment variables that can be set for further customization:

ADMIN : Sets the admin password for the Databag application. Replace
${DATABAG_PASSWORD} with a strong, secure password.
DEV : Set this to 1 if you want to launch the server manually for development purposes.

Once the Docker Compose file is configured, you can deploy the stack to Docker Swarm. This will
ensure that Databag and Traefik are running across your nodes.

Deploy the stack using the following command:

This command will start the Databag service with the Traefik reverse proxy, ensuring that traffic is
correctly routed to your Databag instance.

 - management_net
 deploy:
 # Deploy in "replicated" mode ensures the service runs across the number of replicas specified below.
 # In this case, the replicas are set to 1, meaning only one instance of the Databag service will run.
 mode: replicated
 replicas: 1
 labels:
 - 'traefik.enable=true'
 - 'traefik.http.routers.databag.rule=Host(`databag.domain.tld`)'
 - 'traefik.http.routers.databag.entrypoints=websecure'
 - 'traefik.http.routers.databag.tls.certresolver=leresolver'
 - 'traefik.http.services.databag.loadbalancer.server.port=7000'
 - 'traefik.docker.network=management_net'

networks:
 management_net:
 external: true

Optional: Set Additional Environment Variables

IF YOU WANT TO USE AUDIO/VIDEO CALL FUNCTION, GO VISIT THIS ARTICLE.

Step 3: Deploy the Stack in Docker Swarm

docker stack deploy -c docker-compose.yaml databag

https://wiki.aeoneros.com/books/databag-encrypted-chat/page/step-by-step-setup-guide-coturn-turn-server

By following this guide, you have successfully set up Databag with Traefik in a Docker Swarm
environment. The use of GlusterFS ensures persistent storage across your nodes, while Traefik
manages traffic to your Databag service. You can now manage your decentralized chat service with
a secure setup, fully capable of scaling across multiple nodes in your Swarm cluster.

You can now access your Databag Server underhttps://databag.domain.tld/ and Login as
Admin to configure more details.

Conclusion

https://databag.domain.tld/

Getting Started

This step-by-step article will guide you through setting up Coturn, a TURN server, using Docker
Swarm and Traefik as a reverse proxy. You will configure Coturn to help WebRTC function by
handling NAT traversal issues in peer-to-peer connections.

Linux server with Docker Swarm and Traefik installed. -> Check this Article
A domain name for the TURN server (optional but recommended).
GlusterFS or similar shared storage system (optional for Docker Swarm). -> Check this
Article
Knowledge of setting up Docker, Docker Compose, and basic networking. -> Check this
Article

If you use Docker Swarm and want data shared across all nodes, create a directory in GlusterFS for
persistent data.

Step-by-Step Setup Guide
Coturn - TURN Server

GabrielTanner Website

Prerequisites

Step 1: Set Up Data Directory in GlusterFS

mkdir -p /mnt/glustermount/data/coturn_data

https://wiki.aeoneros.com/books/docker-guide/page/getting-started-with-swarm-mode-create-a-swarm
https://wiki.aeoneros.com/books/glusterfs-keepalived-setup/chapter/glusterfs
https://wiki.aeoneros.com/books/glusterfs-keepalived-setup/chapter/glusterfs
https://wiki.aeoneros.com/books/docker-guide
https://wiki.aeoneros.com/books/docker-guide
https://gabrieltanner.org/blog/turn-server/
https://github.com/TannerGabriel
https://hub.docker.com/r/coturn/coturn/tags

Create a configuration file for Coturn (turnserver.conf) that defines essential settings like server
realm, authentication, ports, and SSL certificates.

Also Create a Logfile for Persistant Data in GlusterFS:

Single Configure Steps

1. Add the following content to define your Coturn server realm and server name.
Replace the placeholder values according to your needs.

TURN server name and realm
realm=<DOMAIN>
server-name=<SERVER_NAME>

2. After that, add the external-ip key to define your server’s IP-Address and the listening-
ip key to specify which IP-Addresses the Coturn server should listen to (0.0.0.0 tells
the server to listen to all IP-Addresses).

IPs the TURN server listens to
listening-ip=0.0.0.0

External IP-Address of the TURN server
external-ip=IP_ADDRESS

3. Next you can define the port your server will listen on and the ports for further
configuration.

Main listening port
listening-port=3478

Further ports that are open for communication
min-port=10000

Step 2: Create and Customize
turnserver.conf

sudo nano /mnt/glustermount/data/coturn_data/turnserver.conf

sudo nano /mnt/glustermount/data/coturn_data/turnserver.log

max-port=20000

4. Then you can continue by defining the directory for your logs and enable the verbose
logging mode.

Use fingerprint in TURN message
fingerprint

Log file path
log-file=/var/log/turnserver.log

Enable verbose logging
verbose

5. Lastly, you can enable authentication for your TURN server using the user and lt-cred-
mech keys.

Specify the user for the TURN authentication
user=test:test123

Enable long-term credential mechanism
lt-cred-mech

These configuration blocks will result in the following file:

TURN server name and realm
realm=DOMAIN
server-name=turnserver

Use fingerprint in TURN message
fingerprint

IPs the TURN server listens to
listening-ip=0.0.0.0

External IP-Address of the TURN server
external-ip=IP_ADDRESS

Once you’re done, save and exit your file.

You can further customize your configuration for your own needs by changing the give keys’ values
or by adding new ones. You can reference the original configuration, which provides essential
documentation for the most important options.

Main listening port
listening-port=3478

Further ports that are open for communication
min-port=10000
max-port=20000

Log file path
log-file=/mnt/glustermount/data/coturn_data/turnserver.log

Enable verbose logging
verbose

Specify the user for the TURN authentification
user=test:test123

Enable long-term credential mechanism
lt-cred-mech

If running coturn version older than 4.5.2, uncomment these rules and ensure
that you have listening-ip set to ipv4 addresses only.
Prevent Loopback bypass https://github.com/coturn/coturn/security/advisories/GHSA-6g6j-r9rf-cm7p
#denied-peer-ip=0.0.0.0-0.255.255.255
#denied-peer-ip=127.0.0.0-127.255.255.255
#denied-peer-ip=::1

Step 3: Create PID Folder & Create
CoturnUser

1. Create a System User for Coturn: This command creates a system user for Coturn with no
login shell for security purposes:

2. Set Ownership: Change the ownership of the Coturn data directory to the newly created
Coturn user:

3. Set Correct Permissions: Ensure that only the Coturn user has access to this directory by
setting the proper permissions:

Now, set up a docker-compose.yaml file to run Coturn inside Docker Swarm.

Add the following Docker Compose configuration:

sudo useradd -r -s /bin/false coturn

sudo chown -R coturn:coturn /mnt/glustermount/data/coturn_data

sudo chmod -R 700 /mnt/glustermount/data/coturn_data

These steps will ensure that Coturn has the correct permissions to access and write files in
its data directory.

Step 4: Set Up Docker Compose for Coturn

nano /mnt/glustermount/data/coturn_data/docker-compose.yaml

 coturn:
 image: coturn/coturn:4.5.2
 environment:
 - TURN_REALM=<DOMAIN>
 - TURN_LISTEN_PORT=3478
 volumes:
 - /mnt/glustermount/data/coturn_data/turnserver.conf:/etc/coturn/turnserver.conf:ro
 - /mnt/glustermount/data/coturn_data/pid:/var/run
 networks:
 - management_net

For external access, you need to set up port forwarding on your router or firewall. Forward the
following ports:

3478 TCP/UDP: TURN Port.
49152–65535 UDP: Ensure this range of ports (or at least some) is open for relayed
media traffic.

These ports allow external clients to connect to your VPN server and administrators to access the
web interface.

Setting up a TURN server with Coturn in Docker Swarm can simplify peer-to-peer communication in
WebRTC applications, especially in networks where NAT traversal is required. With Traefik as a
reverse proxy, you can easily manage your server through HTTPS and make it accessible from the
internet. By following this guide, you’ve built a robust, scalable, and secure TURN server setup.

 deploy:
 mode: replicated
 replicas: 1

networks:
 management_net:
 external: true

Step 5: Port Forwarding

If you dont know how to do that go visit this Website from NordVPN.

Conclusion

https://nordvpn.com/de/blog/open-ports-on-router/

