
A working Docker Swarm cluster.
Traefik configured on the management_net overlay network.
Basic knowledge of Traefik’s static and dynamic configuration files.

We will integrate the Coraza WAF plugin into Traefik to block access to a specific path (/admin) and
log denied requests.

Step-by-Step Guide:
Integrating Coraza WAF
Plugin with Traefik on
Docker Swarm

Prerequisites

Part 1: Adding the Coraza WAF
Plugin to Traefik

https://github.com/jcchavezs/coraza-http-wasm-traefik
https://coraza.io/
https://traefik.io/blog/exploring-traefiks-waf-integration-and-how-to-make-it-23x-faster/

The first step is to enable the Coraza WAF plugin in the Traefik static configuration (static.toml file).
This file defines the essential settings for Traefik and is loaded at startup.

Next, define the Coraza WAF middleware in the dynamic.toml file. This middleware will block access
to /admin and log the event.

SecRuleEngine On : Activates the WAF engine.
SecRule REQUEST_URI "@streq /admin" : This checks if the request URI matches /admin .
Action: If it matches, the WAF logs the attempt and denies access with a 403 Forbidden
response.

Now, let's create a docker-compose.yml file to deploy Traefik and its services in Docker Swarm, with
1 replica running on the management_net network. With the Static & Dynamic Configs in the

Step 1: Modify the static.toml Configuration

[experimental.plugins]
 [experimental.plugins.coraza]
 moduleName = "github.com/jcchavezs/coraza-http-wasm-traefik"
 version = "v0.2.2"

This enables the Coraza WAF plugin for Traefik.

Step 2: Configure Middleware in the dynamic.toml

[http.middlewares]
 [http.middlewares.coraza-waf.plugin.coraza]
 directives = [
 "SecRuleEngine On",
 "SecDebugLog /dev/stdout",
 "SecDebugLogLevel 9",
 "SecRule REQUEST_URI \"@streq /admin\" \"id:101,phase:1,log,deny,status:403\""
]

Step 3: Deploy the Middleware on Docker Swarm

Glustermount.

This is an Example on how to Implement the Middleware into an Example Service called "whoami".

Deploy the stack to Docker Swarm with the following command:

Coraza doesn't include the OWASP CRS by default, but you can manually integrate the CRS to
bolster security. Let’s walk through how to download, customize, and apply the CRS to the Coraza
WAF.

 whoami:
 image: traefik/whoami
 networks:
 - management_net
 deploy:
 replicas: 1
 labels:
 - "traefik.http.routers.whoami.rule=Host(`whoami.aeoneros.com`)"
 - "traefik.http.middlewares.coraza-waf.plugin.coraza.directives"

docker stack deploy -c docker-compose.yml waf_stack

This will deploy Whoami as a Service in Docker Swarm with the Coraza WAF
middleware applied.

Part 2: Adding OWASP Core Rule Set (CRS)
to Coraza Middleware

Step 1: Download the Core Rule Set

Start by downloading the OWASP CRS from its official repository. This rule set provides security
rules to protect against a wide range of common threats, including XSS, SQLi, and more.

Clone the repository:

Next, integrate the CRS into Coraza by modifying the dynamic.toml file to load the CRS rules.

Update the dynamic.toml to include the CRS rule files:

This configuration tells Coraza to load the Core Rule Set. The crs-setup.conf file is used for basic CRS
configuration, and the rules/*.conf files contain the individual rule sets.

You can further enhance security by adding custom rules to your WAF configuration. For instance,
you might want to protect your application against SQL injection attempts.

Add a custom SQL injection detection rule in the dynamic.toml file:

This rule will inspect the request arguments (query parameters) for SQL injection patterns and
block the request if it detects a match.

git clone https://github.com/coreruleset/coreruleset.git

Step 2: Integrate the CRS into Coraza

[http.middlewares]
 [http.middlewares.coraza-waf-crs.plugin.coraza]
 directives = [
 "Include /etc/modsecurity.d/coreruleset/crs-setup.conf",
 "Include /etc/modsecurity.d/coreruleset/rules/*.conf"
]

Step 3: Add Custom Rules

[http.middlewares]
 [http.middlewares.coraza-waf-custom.plugin.coraza]
 directives = [
 "Include /etc/modsecurity.d/custom_rules.conf",
 "SecRule ARGS \"@rx select.*from.*\" \"id:102,phase:2,log,deny,status:403,msg:'SQL Injection Attempt'\""
]

Add this rule to block SQL injection attempts in URL parameters:

To prevent brute-force attacks or excessive requests, you can implement rate limiting using
ModSecurity:

This rule limits clients to 100 requests within a 60-second period.

Integrating Coraza WAF with Traefik is an excellent way to secure your web applications from
common threats. By following this guide, you've successfully added Coraza to your Traefik setup,
integrated the OWASP Core Rule Set, and customized rules to meet your security needs. With
proper monitoring, troubleshooting, and performance considerations in place, you can deploy this
WAF solution confidently in production environments.

Additional Examples: Core Rule Set
Enhancements
1. Blocking SQL Injection

SecRule ARGS "@rx select.*from.*" "id:103,phase:2,log,deny,status:403,msg:'SQL Injection Attempt'"

2. Enabling Rate Limiting

SecAction "id:104,phase:1,pass,nolog,initcol:ip=%{REMOTE_ADDR},expirevar:ip.counter=60"
SecRule IP:COUNTER "@gt 100" "id:105,phase:1,deny,status:429,msg:'Too Many Requests'"

Conclusion

Revision #5
Created 13 October 2024 15:15:21 by aeoneros
Updated 13 October 2024 15:30:45 by aeoneros

