
Overview

What is OWASP Coroza WAF?
Step-by-Step Guide: Integrating Coraza WAF Plugin with Traefik on Docker
Swarm

Troubleshooting

Monitoring and Troubleshooting Coraza WAF

Coraza - Web
Application Firewall

Overview

Overview

In today's security landscape, web applications are vulnerable to a variety of threats such as SQL
injection (SQLi), Cross-Site Scripting (XSS), and brute-force attacks. A Web Application Firewall
(WAF) is a crucial defense mechanism, filtering and monitoring HTTP traffic to prevent such threats.
OWASP Coraza WAF is an open-source WAF solution, highly performant and designed to provide
robust protection for modern web applications.

The Open Web Application Security Project (OWASP) is a non-profit, open-source foundation
dedicated to improving the security of software. OWASP provides freely available resources, such
as documentation, tools, and community support, to help developers and organizations secure
their applications. Among its most notable contributions is the OWASP Top 10, a list of the most
critical security risks to web applications. Another significant offering is the OWASP Core Rule
Set (CRS), a set of attack detection rules that can be used to protect web applications from
various types of attacks.

What is OWASP Coroza WAF?

Introduction

What is OWASP?

https://github.com/jcchavezs/coraza-http-wasm-traefik
https://coraza.io/
https://traefik.io/blog/exploring-traefiks-waf-integration-and-how-to-make-it-23x-faster/

ModSecurity is one of the most widely used open-source WAF engines, initially developed as a
module for Apache HTTP Server and now supporting other platforms. It helps secure web
applications by filtering HTTP requests, using rulesets such as the OWASP CRS. ModSecurity can
detect and block attacks like SQLi, XSS, and Local File Inclusion (LFI).

Coraza WAF builds upon the principles of ModSecurity but aims to offer a more modern,
lightweight, and flexible approach. While ModSecurity has become a standard for many years,
Coraza WAF introduces new performance optimizations and extensibility, ensuring high
throughput for large-scale applications with minimal latency. Coraza is compatible with OWASP
CRS, allowing it to offer similar attack prevention capabilities while being more adaptable to
modern infrastructures like containers and cloud-native environments.

Coraza WAF is an open-source, high-performance Web Application Firewall designed to protect
web applications from common vulnerabilities and attacks. Built with extensibility and performance
in mind, Coraza provides a modern alternative to legacy WAF solutions like ModSecurity. It offers
features such as customizable rules, integration with OWASP CRS, and flexible deployment options
in cloud-native environments.

Open-Source: Coraza is fully open-source under the Apache 2 license, encouraging
community-driven development and contribution.
Security: It is designed to enforce security policies using either the OWASP CRS or
custom rule sets, providing comprehensive protection against common attack vectors like
SQLi and XSS.
High Performance: Coraza is optimized for performance, making it suitable for a range
of applications, from small blogs to high-traffic websites, without introducing significant
latency.
Extensibility: Coraza’s modular design allows for easy extension through custom audit
loggers, persistence engines, and additional functionalities.
Integrations: Although Coraza is primarily a WAF library, it supports numerous
integrations, making it deployable as a reverse proxy, containerized service, or in
traditional server setups.

What is ModSecurity and its Relation to
Coraza WAF?

What is Coraza WAF?

Key Features:

By integrating Coraza WAF into Traefik, you can significantly enhance the security posture of your
applications. Some of the benefits include:

Enhanced Security: Protect applications from common attack vectors such as SQLi, XSS,
and brute-force attempts.
Centralized Management: Apply security policies across all services managed by
Traefik from a single location, simplifying administration.
Flexibility: Modify or remove security rules without affecting the underlying
infrastructure or requiring service downtime.
Customization: Coraza allows you to create custom security rules that are tailored
specifically to your application’s environment.
OWASP CRS Support: Coraza can integrate the OWASP Core Rule Set to provide out-of-
the-box protection against common vulnerabilities.

Coraza WAF, with its strong integration capabilities, performance, and extensibility, offers a
modern approach to web application security. When paired with Traefik, it provides a powerful
combination of reverse proxying and security enforcement, making it an excellent choice for
safeguarding web applications in both traditional and cloud-native environments.

Benefits of Adding WAF Middleware to
Traefik

Conclusion

Overview

A working Docker Swarm cluster.
Traefik configured on the management_net overlay network.
Basic knowledge of Traefik’s static and dynamic configuration files.

Step-by-Step Guide:
Integrating Coraza WAF
Plugin with Traefik on
Docker Swarm

Prerequisites

Part 1: Adding the Coraza WAF
Plugin to Traefik

https://github.com/jcchavezs/coraza-http-wasm-traefik
https://coraza.io/
https://traefik.io/blog/exploring-traefiks-waf-integration-and-how-to-make-it-23x-faster/

We will integrate the Coraza WAF plugin into Traefik to block access to a specific path (/admin) and
log denied requests.

The first step is to enable the Coraza WAF plugin in the Traefik static configuration (static.toml file).
This file defines the essential settings for Traefik and is loaded at startup.

Next, define the Coraza WAF middleware in the dynamic.toml file. This middleware will block access
to /admin and log the event.

SecRuleEngine On : Activates the WAF engine.
SecRule REQUEST_URI "@streq /admin" : This checks if the request URI matches /admin .
Action: If it matches, the WAF logs the attempt and denies access with a 403 Forbidden
response.

Step 1: Modify the static.toml Configuration

[experimental.plugins]
 [experimental.plugins.coraza]
 moduleName = "github.com/jcchavezs/coraza-http-wasm-traefik"
 version = "v0.2.2"

This enables the Coraza WAF plugin for Traefik.

Step 2: Configure Middleware in the dynamic.toml

[http.middlewares]
 [http.middlewares.coraza-waf.plugin.coraza]
 directives = [
 "SecRuleEngine On",
 "SecDebugLog /dev/stdout",
 "SecDebugLogLevel 9",
 "SecRule REQUEST_URI \"@streq /admin\" \"id:101,phase:1,log,deny,status:403\""
]

Step 3: Deploy the Middleware on Docker Swarm

Now, let's create a docker-compose.yml file to deploy Traefik and its services in Docker Swarm, with
1 replica running on the management_net network. With the Static & Dynamic Configs in the
Glustermount.

This is an Example on how to Implement the Middleware into an Example Service called "whoami".

Deploy the stack to Docker Swarm with the following command:

Coraza doesn't include the OWASP CRS by default, but you can manually integrate the CRS to
bolster security. Let’s walk through how to download, customize, and apply the CRS to the Coraza
WAF.

 whoami:
 image: traefik/whoami
 networks:
 - management_net
 deploy:
 replicas: 1
 labels:
 - "traefik.http.routers.whoami.rule=Host(`whoami.aeoneros.com`)"
 - "traefik.http.middlewares.coraza-waf.plugin.coraza.directives"

docker stack deploy -c docker-compose.yml waf_stack

This will deploy Whoami as a Service in Docker Swarm with the Coraza WAF
middleware applied.

Part 2: Adding OWASP Core Rule Set (CRS)
to Coraza Middleware

Step 1: Download the Core Rule Set

Start by downloading the OWASP CRS from its official repository. This rule set provides security
rules to protect against a wide range of common threats, including XSS, SQLi, and more.

Clone the repository:

Next, integrate the CRS into Coraza by modifying the dynamic.toml file to load the CRS rules.

Update the dynamic.toml to include the CRS rule files:

This configuration tells Coraza to load the Core Rule Set. The crs-setup.conf file is used for basic CRS
configuration, and the rules/*.conf files contain the individual rule sets.

You can further enhance security by adding custom rules to your WAF configuration. For instance,
you might want to protect your application against SQL injection attempts.

Add a custom SQL injection detection rule in the dynamic.toml file:

This rule will inspect the request arguments (query parameters) for SQL injection patterns and
block the request if it detects a match.

git clone https://github.com/coreruleset/coreruleset.git

Step 2: Integrate the CRS into Coraza

[http.middlewares]
 [http.middlewares.coraza-waf-crs.plugin.coraza]
 directives = [
 "Include /etc/modsecurity.d/coreruleset/crs-setup.conf",
 "Include /etc/modsecurity.d/coreruleset/rules/*.conf"
]

Step 3: Add Custom Rules

[http.middlewares]
 [http.middlewares.coraza-waf-custom.plugin.coraza]
 directives = [
 "Include /etc/modsecurity.d/custom_rules.conf",
 "SecRule ARGS \"@rx select.*from.*\" \"id:102,phase:2,log,deny,status:403,msg:'SQL Injection Attempt'\""
]

Add this rule to block SQL injection attempts in URL parameters:

To prevent brute-force attacks or excessive requests, you can implement rate limiting using
ModSecurity:

This rule limits clients to 100 requests within a 60-second period.

Integrating Coraza WAF with Traefik is an excellent way to secure your web applications from
common threats. By following this guide, you've successfully added Coraza to your Traefik setup,
integrated the OWASP Core Rule Set, and customized rules to meet your security needs. With
proper monitoring, troubleshooting, and performance considerations in place, you can deploy this
WAF solution confidently in production environments.

Additional Examples: Core Rule Set
Enhancements
1. Blocking SQL Injection

SecRule ARGS "@rx select.*from.*" "id:103,phase:2,log,deny,status:403,msg:'SQL Injection Attempt'"

2. Enabling Rate Limiting

SecAction "id:104,phase:1,pass,nolog,initcol:ip=%{REMOTE_ADDR},expirevar:ip.counter=60"
SecRule IP:COUNTER "@gt 100" "id:105,phase:1,deny,status:429,msg:'Too Many Requests'"

Conclusion

Troubleshooting

Troubleshooting

For users deploying Coraza WAF in production environments, monitoring and troubleshooting
are essential for ensuring optimal security and performance.

Coraza's WAF rules can be monitored through log files. Logs can be directed to standard output (
/dev/stdout) to view in real time, or you can configure log files for long-term monitoring.

To monitor logs, ensure you have the following settings in your dynamic.toml :

Use docker logs to view the WAF activity logs:

Monitoring and
Troubleshooting Coraza WAF

Monitoring WAF Logs

[http.middlewares]
 [http.middlewares.coraza-waf-logging.plugin.coraza]
 directives = [
 "SecDebugLog /dev/stdout",
 "SecDebugLogLevel 9"
]

https://github.com/jcchavezs/coraza-http-wasm-traefik
https://coraza.io/
https://traefik.io/blog/exploring-traefiks-waf-integration-and-how-to-make-it-23x-faster/

Introducing a WAF may add latency to your application due to the extra processing required to
inspect HTTP requests. To monitor performance, you can use tools like Prometheus and Grafana to
gather metrics on request processing time and WAF performance.

When troubleshooting WAF-related issues:

Check the debug logs for detailed information on blocked requests.
Use whitelisting techniques to avoid false positives. For example, you can disable
specific rules for known safe traffic by using the SecRuleRemoveById directive.

docker logs $(docker ps -qf name=traefik)

Performance Considerations

Troubleshooting Issues

