
What is OIDC?
Setup OIDC Guide for Beginners
Add OIDC-Integration for Linkwarden

OpenID Connect 1.0

What is OIDC?

https://www.authelia.com/
https://github.com/authelia/authelia
https://hub.docker.com/r/authelia/authelia

Overview
This page shows one example use case of OpenID Connect (OIDC), using Traefik as a
reverse proxy, Authelia as an identity provider (OIDC Provider), and Linkwarden (the
“Relying Party”). Please note that OIDC supports many different use cases and flow
types—this walkthrough is just to demonstrate one approach.

https://openid.net/connect/
https://www.authelia.com/

1. User goes to the Relying Party (Linkwarden).
The user attempts to access Linkwarden, which is behind Traefik. Because Linkwarden
requires authentication, the user must log in.

2. User chooses to log in with the OIDC Provider (Authelia).
When the user selects a “Login with Authelia” option, Linkwarden (through Traefik)
redirects the user to Authelia.

3. User gets redirected to the OIDC Provider (Authelia).
The browser is sent to Authelia’s login page.

4. User logs in with the OIDC Provider (Authelia).
Authelia verifies the user’s credentials (for example, via LDAP, a local user database, or
some other method).

5. OIDC Provider (Authelia) generates an ID Token (JWT).
This ID Token contains “claims” (such as username, groups, and email) based on the
scopes defined in Authelia’s configuration.
Authelia signs the ID Token (it is a JWT) before sending it back to Linkwarden (the
Relying Party).

Here’s a simple table of possible scopes and example claim data:
Scope Claim

Profile Name

Groups Groupa, Groupb, Groupc

Email test @gmail.com

Example OIDC Flow

https://wiki.aeoneros.com/uploads/images/gallery/2025-02/50tpl4yni8gVn6KC-how-oidc-works.webp

6. Relying Party (Linkwarden) reads the ID Token to grant access.
Linkwarden looks at the returned claims within the token (only what was allowed by the
configured OIDC scopes) and decides whether to allow the user in. It then notifies the
user’s browser that login was successful.

7. User is logged in.
The user is now recognized as authenticated in Linkwarden.

OIDC scopes determine what information the Relying Party can request (and potentially receive)
about the user. Typical scopes include:

openid
Required for OIDC; indicates that the client (Relying Party) intends to use OIDC to verify
user identity.
groups
Allows access to group membership claims (e.g., Groupa, Groupb).
email
Gives the relying service access to the user’s email address (if available).
profile
Allows for basic profile details, such as name or preferred username.

For example, if Linkwarden requests the scopes:

it may receive your group memberships, email address, and display name in the returned ID
Token.

A JWT (JSON Web Token) is the format often used to transmit information securely between parties
as a JSON object:

hmac_Secret = A random secret known only to Authelia (or the OIDC Provider).

What Are OIDC Scopes?

- openid
- groups
- email
- profile

What Is a JWT?

JSON Web Token = The data payload + a signature + a header.
You can inspect or verify a JWT at jwt.io to ensure nobody has modified the data.
Important: JWTs are not encrypted by default. They are signed to ensure the content
hasn’t been tampered with, but anyone who has the token can read the data inside. If
encryption is needed, an additional layer (e.g., HTTPS in transit or encrypted tokens at
rest) must be used.

Using OIDC with Traefik, Authelia, and Linkwarden is just one practical illustration of OpenID
Connect flows. Authelia serves as the OIDC Provider, creating JWT-based ID Tokens. Linkwarden
(the Relying Party) receives these signed tokens, reads the claims (like email or group
memberships), and grants access. You can tailor the scopes and claims for your setup, making this
flow flexible and secure for various applications.

Conclusion

https://jwt.io/

Setup OIDC Guide for
Beginners

https://www.authelia.com/
https://github.com/authelia/authelia
https://hub.docker.com/r/authelia/authelia

Please take a look at how OIDC works here if you haven’t already: What is OIDC?
This little Wiki Article will guide you through how to get OIDC running. In this example, we will set
up OIDC with the service Linkwarden.

Make sure you have the following set up:

Traefik as a Reverse Proxy to get certificates and provide access to your
Website/Subdomains: Traefik Reverse Proxy.
Authelia as a Middleware/Addon for Traefik, already configured with a “Whoamisecure”
test to ensure your Authelia is working before adding OIDC: Getting Started.

Open your Authelia configuration file and edit it (in this example, we store it on a GlusterFS mount
at /mnt/glustermount/data/authelia_data/config/configuration.yml):

Overview

Requirements

Step 1

nano /mnt/glustermount/data/authelia_data/config/configuration.yml

https://wiki.aeoneros.com/books/authelia/page/what-is-oidc
https://wiki.aeoneros.com/books/linkwarden
https://wiki.aeoneros.com/books/traefik-reverse-proxy-for-docker-swarm
https://wiki.aeoneros.com/books/authelia/chapter/getting-started

Scroll to the bottom of your config file and add the following code:

By adding the identity_providers section, you enable OIDC in Authelia. All settings in that block
belong to OIDC. Please note this is only the minimum required configuration for our setup. You can
find more details here: Authelia OIDC Introduction.

The HMAC Secret is a random string known only to Authelia. Do not make this public.

The HMAC secret is used to sign the JWT. This string is hashed to a SHA256 (RFC6234) byte
string.

It’s strongly recommended you use a random alphanumeric string with 64 or more characters.

Generate a key in Docker CLI:

Step 2

identity_providers:
 oidc:
 hmac_secret: 'this_is_a_secret_abc123abc123abc'
 jwks:
 - key_id: 'F2H5xqbYsa3AssEZTU'
 algorithm: 'RS256'
 use: 'sig'
 key: {{ secret "/secrets/rsa_2048_private.txt" | mindent 10 "|" | msquote }}
 lifespans:
 access_token: '1 hour'
 authorize_code: '1 minute'
 id_token: '1 hour'
 refresh_token: '90 minutes'
 enable_client_debug_messages: false

Step 3

HMAC_Secret

https://www.authelia.com/integration/openid-connect/introduction/
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6234
https://www.authelia.com/reference/guides/generating-secure-values/#generating-a-random-alphanumeric-string

For example: "rzUPr41040tMvw4tg95Ud2HdcvdDMVZPQQPpHAist386QajGftF4IlFSw0yi2gtD"
Copy it to: hmac_secret: 'this_is_a_secret_abc123abc123abc'

The list of issuer JSON Web Keys. At least one of these must be an RSA Private key configured with
the RS256 algorithm. You can configure multiple keys or algorithms. The first key for each
algorithm is the default if a client isn’t configured to use a specific key_id .

Below is a contextual example:

This is completely optional unless there’s a collision between automatically generated key IDs. If
provided, it must be a unique string with fewer than 100 characters, matching the regular
expression ^[a-zA-Z0-9](([a-zA-Z0-9._~-]*)([a-zA-Z0-9]))?$.

docker run --rm authelia/authelia:latest authelia crypto rand --length 64 --charset alphanumeric

JWKs

identity_providers:
 oidc:
 jwks:
 - key_id: 'example'
 algorithm: 'RS256'
 use: 'sig'
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 ...
 -----END RSA PRIVATE KEY-----
 certificate_chain: |
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----

RFC Internet Standard:
RFC (Request for Comments) documents define internet standards, protocols, and best
practices. For example, RFC7519 outlines how JSON Web Tokens should be structured and
validated, ensuring a standard approach to token-based authentication.

KeyID

The default if this value is omitted is the first 7 characters of the public key SHA256 thumbprint in
hex, followed by a hyphen, then the lowercase algorithm value.

For example: "F2H5xqbYsa3AssEZTU"

The key usage. Defaults to sig , which is currently the only available option.

The algorithm for this key. Typically optional, as it can be automatically detected based on the type
of key. At least one RS256 key must be provided.

You can generate an RSA keypair using the Authelia Docker container:

Assuming your working directory is /mnt/glustermount/data/authelia_data/ , you’ll end up with
private.pem and public.pem .

Then, place private.pem somewhere like: /mnt/glustermount/data/authelia_data/secrets/rsa_2048_private.txt

Create folders if necessary:

Open private.pem , copy the content:

And paste it into a new file:

docker run --rm authelia/authelia:latest authelia crypto rand --length 15 --charset alphanumeric

Use

Algorithm

Key

docker run --rm -u "$(id -u):$(id -g)" -v "$(pwd)":/keys authelia/authelia:latest authelia crypto pair rsa generate --
directory /keys

mkdir /mnt/glustermount/data/authelia_data/config/secrets

-----BEGIN RSA PRIVATE KEY-----
...
-----END RSA PRIVATE KEY-----

nano /mnt/glustermount/data/authelia_data/config/secrets/rsa_2048_private.txt

Save with CTRL+O and exit with CTRL+X.

Add Clients/Services to OIDC. Here is an example on how to add Linkwarden: Setup OIDC for
Linkwarden.

With the above configuration, Authelia can function as an OIDC provider, signing JWT tokens for
your clients or services (like Linkwarden). Make sure to correctly configure your OIDC clients with
the same settings (client IDs, secrets, scopes) to ensure smooth authentication. Once you’ve
confirmed it’s working with a test service, you can reuse these steps for additional applications that
support OIDC.

If you use different Paths like mentioned in Step 2, please adjust the Configs.

Step 4

Conclusion

https://wiki.aeoneros.com/books/authelia/page/setup-oidc-for-linkwarden
https://wiki.aeoneros.com/books/authelia/page/setup-oidc-for-linkwarden
https://wiki.aeoneros.com/link/171#bkmrk-step-2

Add OIDC-Integration for
Linkwarden

https://wiki.aeoneros.com/uploads/images/gallery/2025-01/zI77hnYjCvFDCQ3H-authelia.png
https://wiki.aeoneros.com/uploads/images/gallery/2025-01/814rhr5FohzOPEav-github-logo.png
https://wiki.aeoneros.com/uploads/images/gallery/2024-09/3zh7ZTM0tufMvk6C-logo-1.png

This page will show you how to add Linkwarden as a client (integration) for Authelia using OpenID
Connect (OIDC). We’ll walk through configuring the clients section in Authelia’s configuration.yml ,
updating your access control rules, and finally setting up Linkwarden with the correct environment
variables.

In the OIDC setup guide, you’ve already configured the basic OIDC parameters (hmac_secret, jwks,
etc.). Now, we need to add the clients block to your OIDC configuration to allow Linkwarden to
authenticate via Authelia.

Open your Authelia configuration file:

Within the identity_providers > oidc section, add or edit the clients block as follows:

Overview

Step 1:
Authelia Configuration for the New
Client

nano /mnt/glustermount/data/authelia_data/config/configuration.yml

identity_providers:
 oidc:
 hmac_secret: 'this_is_a_secret_abc123abc123abc'
 jwks:
 - key_id: 'F2H5xqbYsa3AssEZTU'
 algorithm: 'RS256'
 use: 'sig'
 key: {{ secret "/secrets/rsa_2048_private.txt" | mindent 10 "|" | msquote }}
 lifespans:
 access_token: '1 hour'

This references the unique identifier for the client (RFC: RFC3986, Section 2.3). In this example, it’s
set to linkwarden . You could instead use a random string to avoid collisions or for security best
practices. Tools like it-tools token generator can be used to generate a random client ID.

This is a human-readable name for your application. Here, we’re calling it Linkwarden . You can
name it anything that will help you identify this application in the future.

This is the secret used by the client to authenticate to Authelia (RFC: RFC3986, Section 2.3). In the
example above, we’re using a hashed secret labeled insecure_secret for testing.

 authorize_code: '1 minute'
 id_token: '1 hour'
 refresh_token: '90 minutes'
 enable_client_debug_messages: false
 clients:
 - client_id: 'linkwarden'
 client_name: 'Linkwarden'
 client_secret: '$pbkdf2-
sha512$310000$c8p78n7pUMln0jzvd4aK4Q$JNRBzwAo0ek5qKn50cFzzvE9RXV88h1wJn5KGiHrD0YKtZaR/nCb2CJ
POsKaPK0hjf.9yHxzQGZziziccp6Yng' #insecure_secret
 public: false
 authorization_policy: 'two_factor'
 redirect_uris:
 - 'https://linkwarden.YOURDOMAIN.com/api/v1/auth/callback/authelia'
 scopes:
 - 'openid'
 - 'groups'
 - 'email'
 - 'profile'
 userinfo_signed_response_alg: 'none'
 token_endpoint_auth_method: 'client_secret_basic'

Step 1.1: client_id

Step 1.2: client_name

Step 1.3: client_secret

https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://it-tools.tech/token-generator
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3

You can generate a more secure secret by running:

When using Docker-Swarm Change the Containername by adding your Stackname infront or using
the ContainerID:

Example output:

You’d then place the Digest portion into the client_secret field in Authelia and use the corresponding
“Random Password” value (or the “insecure_secret” equivalent) in the Linkwarden environment
variable.

Make sure the redirect URI matches https://linkwarden.YOURDOMAIN.com/api/v1/auth/callback/authelia (or
whichever endpoint Linkwarden expects). Adjust your authorization_policy (such as one_factor or
two_factor) depending on your security needs.

docker exec -it authelia authelia crypto hash generate pbkdf2 --variant sha512 --random --random.length 72 --
random.charset rfc3986

docker exec -it traefik_authelia authelia crypto hash generate pbkdf2 --variant sha512 --random --random.length
72 --random.charset rfc3986
docker exec -it 337adb14377e authelia crypto hash generate pbkdf2 --variant sha512 --random --random.length
72 --random.charset rfc3986

Random Password: Xh.nVAMt3P5m~fUTBj4issbKc38Xx5E47nUN7YvTzSntJv0DK2_EKdURzZFYhhs4LE4oKf~c
Digest: $pbkdf2-
sha512$310000$fK3lAD7WgJ147IBgnUdC9g$F1QMc0kpTwVIUNldTaAGG8uD0EoQRxham7nN8HUXHVhNNUh2ubP
u/wgo.YxXYC5ewNL.j3WPqnFLCB/mwfWSgA

Step 1.4: redirect_uris and
authorization_policy

Next, you’ll want to allow access for linkwarden.YOURDOMAIN.com in your Authelia rules. Typically,
this is done in the access_control section:

Replace links.YOURDOMAIN.com or add another rule for the domain or subdomain where Linkwarden
resides (linkwarden.YOURDOMAIN.com).

If using a Docker Compose setup, you can add the following environment variables in your docker-
compose.yaml (or the equivalent setup in Portainer):

Step 2: Add Domain to Authelia
Access Control

access_control:
 default_policy: 'deny'
 rules:
 - domain: 'whoami-secure.YOURDOMAIN.com'
 policy: 'two_factor'
 - domain: 'links.YOURDOMAIN.com'
 policy: 'two_factor'

Step 3: Add OIDC Settings to
Linkwarden

services:
 linkwarden:
 image: ghcr.io/linkwarden/linkwarden:v2.9.3
 environment:
 # SSO - Authelia
 - NEXT_PUBLIC_AUTHELIA_ENABLED=true
 - AUTHELIA_WELLKNOWN_URL=https://auth.YOURDOMAIN.com/.well-known/openid-configuration
 - AUTHELIA_CLIENT_ID=${AUTHELIA_CLIENT_ID}
 - AUTHELIA_CLIENT_SECRET=${AUTHELIA_CLIENT_SECRET}
 # SSO - Accounts

Important: Make sure DISABLE_NEW_SSO_USERS is set to false or new users will be blocked from
logging in via SSO.

Environment Variable Default Description

NEXT_PUBLIC_AUTHELIA_ENABLED - If set to true, Authelia will be enabled
and you'll need to define the variables
below.

AUTHELIA_WELLKNOWN_URL - https://{{authelia.domain.com}}/.well
-known/openid-configuration

AUTHELIA_CLIENT_ID - Client ID

AUTHELIA_CLIENT_SECRET - Client Secret. (Random Password from
command below)

AUTHELIA_WELLKNOWN_URL : This is an OIDC discovery URL that describes what Authelia supports
(endpoints, claims, etc.)
AUTHELIA_CLIENT_ID (RFC RFC3986, Section 2.3): Again, best practice is a random unique string.
AUTHELIA_CLIENT_SECRET (RFC RFC3986, Section 2.3): Generated secret value (either from the
example above or your own generator).

After updating the environment variables in your Docker Compose or Portainer configuration,
restart Linkwarden to apply the changes:

Or the equivalent command depending on your environment. Once Linkwarden is back online, you
can head to its login page and try logging in with Authelia.

 - DISABLE_NEW_SSO_USERS=false

Environment Variables Table

Step 4: Restart Linkwarden

docker-compose up -d

Step 5: Troubleshooting

https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3

If something goes wrong:

Check your Authelia logs to ensure the client is configured correctly.
Verify your redirect URI in both Authelia’s redirect_uris and Linkwarden’s OIDC settings.
Make sure your authorization_policy is not blocking you (e.g., requiring two-factor when you
haven’t set it up).
Confirm DISABLE_NEW_SSO_USERS=false if you want new accounts to be created in
Linkwarden via SSO.

By adding Linkwarden as an OIDC client in Authelia and configuring the environment variables in
Linkwarden, you can centralize authentication and enable secure, convenient login. Be sure to use
secure secrets, update your access control lists carefully, and confirm everything is functioning by
testing the login flow. Once everything is tested and stable, you’re ready to enjoy single sign-on
with Authelia for Linkwarden.

Conclusion

